Ethernet Industrial I/0O Modules

APl and Programming Guide
Model 24xx Family | Rev.A | August 2010

5 E N SOR AY embedded electronics '

Designed and manufactured in the U.S.A.

SENSORAY | p. 503.684.8005 | email: info@SENSORAY.com | www.SENSORAY.com
7313 SW Tech Center Drive | Portland, OR 97223

Table of Contents

Introduction 5.5 Status and Control 11
5.5.1 824xx_SetTimeout().....ceeveevereverereeerereeeenes 11
1.1 Scope 1 5.52 S24XX_RESEHIO() errrmrrrreeererererseeereseseeseeeeeee 11
1.2 Description 1 5.53 s24xx_GetVersionInfo()c.ccoceeerereneneenne 12
1.2.1 Software Hierarchycccccvevervevvervnrernnen. 1 5.6 Timestamp Functions 12
Installation 5.6.1 s24xx_ReadTimestamp().....ccccooevveerereeneennes 12
5.6.2 s24xx_WriteTimestamp()cccoeveenerceneenne. 13
2.1 Executable Software Components.............. 2 L.
201 WANAOWS w.ooooooeeeoee e 2 Model 2410 Digital I/O Module
2.1.2 LANUX oottt 2 6.1 Overview 14
2.2 Application SDK Components............c.c.... 2 6.2 Digital I/O Functions 14
Fundamentals 6.2.1 2410 SetDebounceTime()ccvvvvereerevennnnne. 14
6.2.2 52410 ReadDin().....cccoceverueneeiinceniencene 15
3.1 Board Addressing 3 6.2.3 52410 ReadDOUL() ..e.oeveeeeeeeeeereeeerrereneeenne 15
3.1.1 Board Handles.........cccccooeevninninniniienenen 3 6.2.4 $2410 WriteDout() ...oevveveeveerererererrereerereenene 16
3.1.2 IP Address and Portccccceeeuveeincncnenennenn 3 6.2.5 2410 _SetDoutMode()......cooveevierrerereerenanen. 16
3.1.2.1 Configuring the Network Interface........... 3 6.2.6 52410 WritePWm().....cccoovvverereiierereenrnnen, 17
3.2 Programming Examples 4 6.3 Utility Functions 17
3.2.1 ConStants.....ceecuerueeneenieieneeieeeeieeie e 4 6.3.1 2410 _SetLedBrightness()........cccceeveervevrnnnne 17
3.2.2 Datad TYPES ceoveeueeeieeeniieie et 4 64 Event Capture Functions 18
3.3 Required Function Calls 4 641 OVEIVIEW .oororrrrrvvveeoeoosesssseeessssssessesseeeee 18
Sessions and Transactions 6.4.2 s2410_ReadCapFlang 18
6.4.3 52410 AsyncCapBegin().......cccoevrvveruervennnne. 19
4.1 Overview 5 6.4.3.1 Callback Functioncccecevvevereverennnn. 19
4.1.1 Blocking Behavior.......c..cocccereieinicncncncnnenn 5 6.4.4 s2410_AsyncCapEnd()ccccvvvvevinininnn. 21
412 Thread Safetycocoooomvomeeervceeeereeeeeseseennn: 5 6.4.5 s2410_WriteCapPolarity()coooeuveucunnincs 22
. 6.4.6 52410 WriteCapContinuous()ccccerveeeenee. 22
42 Concurrent Transactions 5 6.4.7 52410 WriteCapOneshot() .oooocorrroorrccrrr. 23
4.3 Errors 5 6.4.8 2410 WriteCapDisable()ccocveverrererrerennene. 23
4.3.1 Error Passing Mechanismc.cccccoeveveunen. 5 6.4.9 52410 _WriteCapTimer()........coceeveverervennennene 24
4.3.2 Error Handlingcccoevvevieniecinnieieee e 6 Model 2426 Multi-Function I/O Module
4.3.3 Error Codesooceverinenenienieneieieeeenceeee 6
Module-Independent Functions 7.1 Overview 25
. 7.2 Digital I/O Functions 25
-1 Overview 8 721 52426 _SetDebounceTime() co..rvrrrrorrrrrr. 25
5.2 API Initialization and Shutdown 8 7.2.2 52426 ReadDin().....ccovveeveeireirieirieceieee 26
52,1 824xX_APIOPEN()..cvirieriieriierinieieeieieeieie e 8 7.2.3 52426 ReadDout()....ccoceveevereeiineeiencene 26
522 S24XX_APICIOSE() cooouvrvvernrvererirecriinereeeenens 8 7.2.4 52426 _SetDoutMode()........vvvvvvrvvvsiirinieienes 27
53 Session Initialization and Shutdown......... 9 7.2.5 s2426_Wr%teDout() .. 27
] 7.2.6 52426 WritePWm()......coooeveuereeninieniencene 28
5.3.1 $24xx_SessionOpen()coceevvereenienienenieniennn 9
5.3.2 824xx_SessionClose()coervereeriervenieereennnns 9
5.4 Error Functions 10
5.4.1 824xxX_ErrorText() cooovvevvererieneeieieeieieeenans 10

Sensoray 24xx Programming Guide Table of Contents

Table of Contents

7.3 Analog I/O Functions 28 7.5 Comport Functions 32
7.3.1 82426 WriteAOUL() oovveeeeeeeeiereeeieie e 28 7.5.1 2426 _ComportOpen()cceeevevvrevereerveruenne 32
7.3.2 52426 ReadAout()cceevverereenerreieeieieeenens 29 7.5.2 52426 _ComportClose()......cceeevervrevereerveruenne 32
7.3.3 52426 ReadAdc() ..ccoovveveenenieniiiiceecees 29 7.5.3 52426 _ComportRead().....ccccevveevurreenencenenne. 33

74 Encoder Functions 30 7.54 52426 _ComportWrite().....ocoveeverereeereervennenne 34
741 52426 ReadEncoderCounts() 30 7.5.5 2426 _Comportloctl().....ccccvveveereeererienne 35
7.4.2 s2426 WriteEncoderMode()ccocevveeruennne 30
7.4.3 s2426 WriteEncoderPreload().........ccoveveenn. 31
7.44 2426 ReadEncoderPreload()c.ccoevueeneene 31

Sensoray 24xx Programming Guide Table of Contents

Chapter 1: Introduction

1.1 Scope

This document describes the application programming interface (API) for Sensoray’s Model 24xx product family of Ethernet
industrial I/O modules.

1.2 Description

The API is a middleware library that will interface one or more Sensoray Model 24xx modules (e.g., Model 2410 48 Channel
Digital I/0, Model 2426 Multi-Function I/O, etc.) to an application program of your design. A rich set of API functions provides
access to all resources on the various types of modules found in the 24xx family. The API supports any arbitrary number of
modules and any combination of module types, limited only by system resources.

Linux and Windows libraries are supplied in the SDK distribution media.

1.2.1 Software Hierarchy

The middleware consists of an executable that serves as an interface between the application program and Ethernet network. The
Windows version is implemented as a dynamic link library, s24xx.prL. The Linux version is a static library, 1ib24xx.a.

Figure 1 illustrates the relationships between the middleware and related software components.

Figure 1: Software hierarchy.

Application Program

!

24xx Middleware

!

Socket API

!

HARDWARE
ACCESS

Sensoray 24xx Programming Guide Introduction

Chapter 2: Installation

2.1 Executable Software Components

The middleware is dependent on a network API, so a suitable socket interface must be installed and properly configured. In
addition, the middleware must be installed on a 24xx client system as described below.

2.1.1 Windows

Dynamic link library file s24xx.DLL must be located in either the directory containing the application that uses it, or in one of the
directories in the operating system’s DLL search path (e.g., “C: \WINDOWS\SYSTEM\SYSTEM32").

2.1.2 Linux

Library file 1ib24xx.a must be located in the linker’s library search path. You can locate the library in one of the linker’s default
search path directories or, alternatively, you may explicitly specify the path of the library when invoking the linker. As an example
of the latter, you could locate the library in your application project’s directory and use a command like this to specify the library
path:

gcc -g -o clientapp clientapp.o -L. -124xx

In this case, the “~L.” indicates that the current directory is to be searched for library files, and the “-124xx” requests linking of
the 1ib24xx.a library file.
2.2 Application SDK Components

Distribution media for the Model 24xx family includes the API libraries, documentation, sample applications and other source
code files:

s24xx.dll Windows API dynamic link library.

s24xx.1ib Windows import library.

s24xx.a Linux API static library.

s24xx.h API declarations. Include this in all C/C++ application modules that call API library functions.
stypes.h API types. This is required by s24xx.h.

Sensoray 24xx Programming Guide Installation

Chapter 3: Fundamentals

3.1 Board Addressing

3.1.1 Board Handles

Every Model 24xx I/0 module is assigned a reference number called a session handle. Many of the API functions include this
handle as an argument.

3.1.2 IP Address and Port

Each module must be configured by assigning it a unique network address and, if desired, unique port numbers. The network

address is the Internet Protocol (IP) address at which the module resides, and the port numbers specify the Telnet and HTTP ports

to use.

Every I/O module has an identical factory-configured IP address and port number. The IP address is set to 192.168.24. xx, where
xx is the last two digits of the model number. For example, Model 7410 Digital I/O modules are setto 192.168.24.10. All boards
are factory configured to use port 23 for Telnet and port 80 for HTTP. If the default address or port numbers are incompatible with

your network, or if the module’s IP address conflicts with another host, it will be necessary to change the module’s network
settings. If you will not be operating the I/O module on a public network, we recommend that you assign IP addresses that are
specifically reserved for private networks, such as 10.x.x.x 0r 192.168.x.x.

3.1.2.1 Configuring the Network Interface

1. Connect the module to your network with an Ethernet patch cable, Category-5 or higher. Use a crossover cable if you are

connecting the module directly to a computer, otherwise use a standard patch cable. Note: this network need not be the one the

module will operate on; it will only be used to configure the module.
2. Apply 24VDC power to the module.

3. Switch to Configuration mode. Hold down the module’s CONFIG pushbutton while you press and then release the RST
pushbutton. The blue LED under the CONFIG pushbutton will light when the module is in Configuration mode. If multiple
modules are connected to your network, ensure that only one module is in Configuration mode.

4. Assign a temporary IP address. The temporary address will only be used during configuration. It is recommended that this

temporary address not be the same as the permanent address you will be assigning to the module later. Choose a temporary
address that is unique and reachable on your configuration network.

Run ARP with this command line:
arp -s <temp addr> 08-00-56-FF-FF-FF

Example:
arp -s 192.168.1.25 08-00-56-FF-FF-FF

Windows
You can do this in either of the following ways:
» Navigate to Start | Run, then type the command into the dialog box and click OK.
* Open a console window, then type the command at the shell prompt followed by Enter.
Linux
Open a shell, then type the command at the shell prompt followed by Enter.
5. Open this URL from a web browser:
http://<temp_addr>/config.htm

Example:
http://192.168.1.25/config.htm

The module’s Configuration web page should appear in your browser window.

6. Program the permanent network settings. In the designated field on the Configuration web page, enter the permanent IP

Sensoray 24xx Programming Guide Fundamentals

address you chose earlier. If necessary, also enter a new netmask and gateway address. Click the Submit button and wait for
the page to reload.

7. Reset the module. Press and release the RST pushbutton. Your permanent network settings are now in effect.

3.2 Programming Examples

The C programming language has been used for all programming examples.

3.2.1 Constants

Many of the examples specify symbolic constants that are defined in s24xx . h, which can be found on the distribution media.

3.2.2 Data Types

In most cases, data values passed to or received from library functions belong to a small set of fundamental data types. All of these
data types are listed in Table 1. Data types are referenced by their C-language type names, as shown in the left column of the table.

Table 1: Data types used by library functions

Type Name Description
u8 8-bit unsigned integer
slée/ulé 16-bit signed/unsigned integer
s32/u32 32-bit signed/unsigned integer
BOOL 32-bit integer (0=false, other=true)
HSESSION void pointer (session handle)
HEVCAP void pointer (event notification system handle)

A few functions make use of structures that are composites of the fundamental types. All structures are defined in header file
s24xx.h.

3.3 Required Function Calls

Some library functions are used universally in all applications, while others, depending on application requirements, may or may
not be used. All applications must, as a minimum, perform the following steps:
1. Call s24xx_apiopen () to initialize the API. This should always be the first API function executed by a client application.
2. For each I/O module, call s24xx_SessionOpen () to open a communication session with it.

3. To guarantee proper cleanup when your application terminates, call S24xx_SessionClose () for each previously opened
session, and then call s24xx_apiClose () after all sessions have been closed.

Sensoray 24xx Programming Guide Fundamentals

Chapter 4: Sessions and Transactions

4.1 Overview

Most API functions involve transactions between the client and an I/O module over a telnet session. When the application program
invokes a transaction by calling an API function, the API internally executes a four-step process:

* Translate the API function and its arguments to an equivalent shell command.
* Send the command to the I/O module via telnet.

* Receive the reply from the I/O module via telnet.

¢ Translate the reply to the form expected by the application program.

Transaction functions are designed to insulate the application programmer from the cumbersome details of network programming
and packet parsing.

4.1.1 Blocking Behavior

All transaction functions are blocking functions, which means that calls to those functions will not return until the transaction (i.e.,
the above four-step process) has completed.

4.1.2 Thread Safety

All transaction functions are thread safe, so it is permissible for multiple API calls to be in progress at the same time on a single
session. For example, an application may be partitioned into multiple threads (e.g., analog I/O thread, digital I/O thread, serial
communication thread) such that each thread asynchronously invokes its own private transactions over a common session. In most
cases, a thread will be blocked and its transaction will be held off if another transaction is already in progress on the same session.

4.2 Concurrent Transactions

Each I/O module supports up to three simultaneous telnet sessions and, as a result, up to three overlapped transactions may be in
progress at the same time on an I/O module.

An Ethernet client may run multiple threads and/or processes in which each thread or process concurrently executes simultaneous
transactions with an I/O module, with each transaction running on a unique session. Simultaneous transactions may also involve

more than one Ethernet client. For example, it is permissible for two or three different Ethernet clients to simultaneously execute
transactions on one module. Each of the three possible simultaneous transactions may be invoked by any arbitrary Ethernet client.

For best performance, multi-threaded applications should communicate over dedicated sessions whenever possible (i.e., one thread
per session). This is because transactions on different sessions can be overlapped, whereas transactions that share a common
session are executed serially.

4.3 Errors

Various errors can occur when interacting with I/O modules over a network. When an error is detected during a session transaction,
it is only known to the session in which it occurs. Sessions are not aware of errors in other sessions.

When an error is detected, the currently executing API function is terminated and, if the error is classified as “fatal,” the error is
permanently logged to the session. Subsequent transaction attempts on the same session will fail if a fatal error has been logged.
Each session’s error log is retained across multiple transaction attempts, effectively propagating a fatal error across any number of
API calls, client threads, and client network interfaces.

4.3.1 Error Passing Mechanism

Most API functions have an argument named err, which is a pointer to an error code that is allocated by the calling thread. Each
thread typically sets its error code to ERR_NONE (zero) before calling an API function to indicate no errors are pending. Every
subsequent call to an API function may change the value of the error code. If the error code is not ERR_NONE when an API function
is called, the function will be aborted and the error code will not be modified. Because of this “error propagation” behavior, it may
not be necessary to check for errors at the end of every transaction. Instead, the application may be designed to catch errors at the

Sensoray 24xx Programming Guide Sessions and Transactions

end of a sequence of transactions, but only if it doesn’t need to know exactly where in the sequence the error occurred. This is done
by setting the error code to ERR_NONE once before calling a sequence of API functions and then checking the error code after the
entire sequence has executed to determine if any errors occurred during the sequence.

This error propagation paradigm includes s24xx_SessionOpen (), which will set an appropriate error code and return NULL if it
fails to create a new session. Instead of checking for errors after calling s24xx_SessionOpen (), the application may continue
onward and attempt transactions as if the session had been successfully opened. All such attempts will fail and leave the error code
unchanged.

4.3.2 Error Handling

Most API functions return a boolean that indicates whether the operation completed successfully. False (zero) is returned if the
operation failed, otherwise True (non-zero) is returned. These functions return False if an error occurs during function execution or
if a previously detected error is pending when the function is called.

Programming languages typically define False as zero, but True has no universally accepted definition. Consequently, in the case
of API functions that return a boolean value, that value should generally be compared to False when deciding if an error occurred.
For example, in VB.NET this is the recommended practice:

If s24xx SomeFunction() = False Then
' handle error ..

Else
' do this if no error ...

Endif

In addition, most functions include in their argument lists a pointer to the caller’s error code. When a function returns False (thus
indicating an error has occurred), the error type can be determined by inspecting the error code. The application can then take
corrective action based on the type of error that was detected.

It is not possible to restore communication on a session that has logged a fatal error; the session must be closed and, if
communication is to be resumed, a new session must be opened.

4.3.3 Error Codes

Symbolic Name Description
ERR_NONE No errors.

Initialization Errors
ERR_MALLOC Internal memory allocation failed.

ERR SOCKETCREATE Failed to create socket.

ERR_SESSIONCONNECT Failed to open a TCP connection t the I/O module’s telnet server.

ERR_TOOMANYSESSIONS The I/0O module’s telnet server is already running the maximum number of sessions.

Most I/0 modules are limited to three concurrent sessions.
ERR OPENSHELL Failed remote shell login.
ERR_THREADCREATE Failed to create internal thread.
ERR_CRITSECTCREATE Failed to create internal critical section.
ERR_CREATEMUTEX Failed to create internal mutex.

Fatal (unrecoverable) Run-time Errors

ERR_INVALIDSESSION

ERR_SOCKET

ERR_CONNCLOSED

ERR_NETWORKWRITE

Session handle is zero. This can happen if your application unsuccessfully attempted to
open a session and then continues on as if the session had opened.

Socket error.

The session’s TCP connection closed unexpectedly. This can happen if an I/O module’s
watchdog times out due to network inactivity.

The socket failed to transmit to the I/O module.

Sensoray 24xx Programming Guide n

Sessions and Transactions

Symbolic Name

Description

ERR_TIMEOUT

ERR_COMPORTATTACH

ERR_SHELLCOMMAND

ERR_RSPSIZE
ERR_CMDARG
ERR_BUFWOULDOVERFLOW

ERR_COMPORTWASATTACHED

ERR_COMPORTUNATTACHED

Timed out waiting for a reply from the I/O module.
Non-fatal (recoverable) Run-time Errors

Failed to attach session to remote comport. This can happen if the remote port is already
attached to another telnet session.

Invalid shell command. For example:
* Invalid channel number, which does not exist on the target I/O module.
* A numerical value exceeds permitted limits.

* Transaction is not supported by the I/O module type (e.g., performing a digital I/O
action on an analog I/O module).

Invalid reply received from I/O module.
Invalid command argument.
Operation would overflow receive buffer.

The session is attached to a remote comport and an attempt was made to execute a
non-comport transaction.

The session is not attached to a remote comport and an attempt was made to execute a
comport transaction.

Sensoray 24xx Programming Guide Sessions and Transactions

Chapter 5: Module-Independent Functions

5.1 Overview

The API functions discussed in this chapter are common to all /O module types.

5.2 API Initialization and Shutdown

5.2.1 s24xx_ApiOpen()

Function:
Prototype:

Returns:

Notes:

Example:

Open and initialize the API.
BOOL s24xx ApiOpen(void);

Returns a non-zero value if successful, or zero if the operation failed. This can fail if the version number of the
socket API is incompatible with middleware, or if TCP/IP is not properly configured on the client.

s24xx_ApiOpen () must be successfully invoked before any other middleware functions are called. Each client
process must call this function exactly once. A multi-threaded application must invoke this once before any other
API functions are called by any of the application’s threads.

See section 5.4.1.

5.2.2 S24xx_ApiClose()

Function:
Prototype:
Returns:

Notes:

Example:

Close the APIL
void s24xx_ ApiClose(void);
None.

If an earlier call to s24xx_apiopen () was successful, this function must be called before the application closes to
ensure that the API shuts down gracefully and properly releases all resources. If an error code was returned by
s24xx_ApiOpen (), however, the application should not call s24xx_ApiClose (). This must be the last API
function called by the application.

See section 5.4.1.

Sensoray 24xx Programming Guide n Module-Independent Functions

5.3 Session Initialization and Shutdown

5.3.1 s24xx_SessionOpen()

Function:

Prototype:

Returns:

Notes:

Example:

Open a communication session with an I/O module.

BOOL s24xx SessionOpen(HSESSION *sess, u32 *err, ul6 model, const char *addr, ul6 port, u32 ms);

Argument Description

sess Pointer to storage that will receive the session handle. The target storage will be set to
zero if a session failed to open.

err Pointer to error code. See Section 4.3.1 for details.

model Model number of the I/O module (e.g., 2410, 2426, etc.)

addr Pointer to a null-terminated string that specifies the I/O module’s IP address in dotted

decimal format.

port Telnet port number used by the I/O board. Use the standard telnet port number (23)
unless the board has been reconfigured to use a non-standard port number.

ms Maximum amount of time to wait (in milliseconds) for the session to be established.
This can be relatively short for dedicated LANSs, but longer times may be needed if
the I/0 board is remotely located.

True if the operation was successful, otherwise False is returned and err will contain the associated error code.

After opening a session for an I/O module, the application may use the session handle in all other functions that
require it.

See section 5.4.1.

5.3.2 s24xx_SessionClose()

Function:

Prototype:

Returns:

Notes:

Example:

Terminate a communication session with an I/O module.

void s24xx BoardClose(HSESSION sess);

Argument Description
sess Session handle obtained from s24xx SessionOpen ().
None.

Each session that has been established by s24xx_sSessionOpen () must be closed when it is no longer needed by
an application. s24xx_SessionClose () severs the communication link between the application program and the
I/O module. The session handle is no longer valid after this call.

s24xx SessionClose () does not alter the state of the module and the module will continue any autonomous
operations already in progress. Since all communications will be severed between the client and the module, the
application should ensure that all I/O interfaces are in appropriate states when s24xx_SessionClose () is called.

See section 5.4.1.

Sensoray 24xx Programming Guide n Module-Independent Functions

5.4 Error Functions

5.4.1 s24xx_ErrorText()

Function:

Prototype:

Returns:

Example:

Return an error description string.
const char * s24xx ErrorText(u32 err);

Argument Description

err Error code. See Section 4.3.3 for list of error codes.

Pointer to a text string that describes the error code contained in err.

// A simple application program.
int main(void)

{

int rtnval = 1;
u32 err = ERR _NONE;
char ipaddr[] = "192.168.24.10"

HSESSION sess;

// Open the API.

if (!sZ4xx_Api0pen())
printf("Failed to open API\n");
else {
// Open a session on a Model 2410 I/0 module.
if (!sZ4xx_SessionOpen(&sess, &err, 2410, ipaddr, 23, 1000)) {
printf ("Error: %s\n", s24xx ErrorText (err));
rtnval = err;
} else {
// ... perform I/O operations as required by the application
s24xx_SessionClose(sess); // Close the session and API.

}
s24xx ApiClose();

}

return rtnval;

Sensoray 24xx Programming Guide

Module-Independent Functions

5.5 Status and Control

5.5.1 s24xx_SetTimeout()

Function:

Prototype:

Returns:

Notes:

Example:

Configure a session’s network watchdog timer.

BOOL s24xx SetTimeout (SESSION sess, u32 *err, u32 count, u32 units, u32 action);

Argument Description

sess Session handle obtained from s24xx SessionOpen ().

err Pointer to error code. See Section 4.3.1 for details.

count Time interval specified in seconds or milliseconds. Set to zero to disable watchdog
(not recommended for production software).

units Time units: UNITS MILLISECONDS or UNITS SECONDS

action Action to be taken upon time-out:
ACTION NONE - terminate the session, but don’t reset any I/O interfaces

ACTION RESET - terminate the session and reset all I/O interfaces

True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Each session employs a timer to detect the absence of communications with clients. If no communication is
received from a client within the specified time interval, the network watchdog will time-out and the specified
action will be taken. Upon time-out, the session is automatically closed. This behavior ensures that the server
session will be freed for other uses and all I/O will be (optionally) reset in the event the client shuts down
abnormally.

By default, the network watchdog timer is set to five minutes when a session is opened, and action is set to
ACTION NONE. If these defaults suit the application then there is no need to call this function.

Upon executing this function, the new time interval is effective immediately and the watchdog timer is restarted.

The time interval may be set to zero to disable the watchdog timer. This should be avoided except during
application development, as it could make it impossible to open new sessions if the client fails to properly close
previous sessions.

// Set the watchdog interval to 3.5 seconds, with no I/0 reset upon time-out.

u32 err = ERR NONE;

if (!s24xx SetTimeout(sess, &err, 3500, UNITS MILLISECONDS, ACTION_NONE))
printf("Error: %s\n", 524xx_ErrorText(err)) ;

5.5.2 s24xx_Resetlo()

Function:

Prototype:

Returns:

Notes:

Example:

Reset all I/0 interfaces to their default power-up condition.

BOOL s24xx_ResetIo(HSESSION sess, u32 *err);

Argument Description
sess Session handle obtained from s24xx SessionOpen ().
err Pointer to error code. See Section 4.3.1 for details.

True if the operation was successful, otherwise False is returned and err will contain the associated error code.

This function resets all I/O interfaces on the target module. For example, digital and analog outputs will be set to
their default power-up states. The module will not reboot, and the session used to invoke this function will remain
open. Typically, this function is only used during application development.

// Reset all I/O interfaces.

Sensoray 24xx Programming Guide Module-Independent Functions

u32 err = ERR NONE;
if (!sZ4xx_ResetIo(sess, é&err))
printf("Error: %s\n", 524xx_ErrorText(err)) ;

5.5.3 s24xx_GetVersionInfo()
Function:. Read a module’s firmware version information.

[ﬁvtogynr BOOL s24xx GetVersionInfo(HSESSION sess, u32 *err, char *buf, u32 len, BOOL *secondary);

Argument Description

sess Session handle obtained from s24xx_SessionOpen ().

err Pointer to error code. See Section 4.3.1 for details.

buf Pointer to buffer that will receive version number string. Set to NULL if string is not
needed.

len Size of buffer that will receive the version number string. Set to zero if not needed.

secondary Pointer to buffer that receives indication that secondary firmware is executing. Set to

NULL if not needed. If not NULL, the buffer will be set to False if the factory-installed
base firmware is running, or True if upgraded firmware is running.

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Example: // Fetch and display firmware version info.
char buf[100];
BOOL secondary;
u32 err = ERR NONE;

if (!524xx_GetVersionInfo(sess, &err, buf, sizeof (buf), &secondary))
printf ("Error: %s\n", s24xx ErrorText (err));
else
printf ("Firmware version: %s (%s)\n", buf, secondary ? "secondary" : "primary");

5.6 Timestamp Functions

Every I/0 module maintains an independent clock that is used to timestamp data returned by various API functions. The clock
starts at zero upon module boot-up or reset and then increments every microsecond. The 32-bit clock overflows (i.e., restarts at
zero) approximately every 71.5 minutes.

5.6.1 s24xx_ ReadTimestamp()

Function: Read module’s system time.

fﬁvtog4nr BOOL s24xx ReadTimestamp(SESSION sess, u32 *err, u32 *timestamp);

Argument Description

sess Session handle obtained from s24xx_SessionOpen ().

err Pointer to error code. See Section 4.3.1 for details.

timestamp Pointer to buffer that will receive the module’s system time.
Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.
Example: // Read and display the current timestamp.

u32 err = ERR NONE;
u32 systime;

if (!524xx_ReadTimestamp(sess, &err, ×tamp))
printf ("Error: %s\n", s24xx ErrorText (err));

else
printf ("Timestamp = %d microseconds\n", timestamp);

Sensoray 24xx Programming Guide Module-Independent Functions

5.6.2 s24xx_WriteTimestamp()
Function: Set module’s system time.

fﬁvtoﬁmoe: BOOL s24xx WriteTimestamp(SESSION sess, u32 *err, u32 systime);

Argument Description

sess Session handle obtained from s24xx SessionOpen ().

err Pointer to error code. See Section 4.3.1 for details.

timestamp Module’s new system time, in microseconds.
Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.
Notes: This function forces a module’s system clock to a desired initial time.
Example: // Force the system clock to zero.

u32 err = ERR NONE;

if (!s24xx WriteTimestamp (sess, &err, 0))

printf ("Error: %s\n", s24xx ErrorText (err));

Sensoray 24xx Programming Guide Module-Independent Functions

Chapter 6: Model 2410 Digital I/0 Module

6.1 Overview

The API functions in this chapter are used to monitor and control Model 2410 48-channel digital I/O modules. They are applicable
only to Model 2410 I/O modules. Any attempt to call them for other I/O module types will result in a ERR_SHELLCOMMAND
transaction error.

Several of these API functions convey information for all 48 DIO channels through an array of three 16-bit words, with each bit
representing one DIO channel. In such cases, the first word (array index 0) represents DIO channels 0-15 (Isb-msb), the second
word represents channels 16-31, and the third word represents channels 32-47.

6.2 Digital 1/O Functions

6.2.1 s2410_SetDebounceTime()

Function:

Prototype:

Returns:

Notes:

Example:

Program the debounce time interval of one digital input channel.

BOOL s2410 SetDebounceInterval(SESSION sess, u32 *err, u8 chan, u8 msec);

Argument Description

sess Session handle obtained from s24xx SessionOpen ().
err Pointer to error code. See Section 4.3.1 for details.
chan DIO channel number: 0 to 47.

msec Debounce time interval in milliseconds: 0 to 255.

True if the operation was successful, otherwise False is returned and err will contain the ass