
SENSORAY | p. 503.684.8005 | email: info@SENSORAY.com | www.SENSORAY.com

7313 SW Tech Center Drive | Portland, OR 97223

Designed and manufactured in the U.S.A.

Ethernet Industrial I/O Modules

API and Programming Guide
Model 24xx Family | Rev.A | August 2010

Sensoray 24xx Programming Guide i Table of Contents

Table of Contents

Introduction

1.1 Scope... 1

1.2 Description ... 1

1.2.1 Software Hierarchy .. 1

Installation

2.1 Executable Software Components 2

2.1.1 Windows .. 2

2.1.2 Linux.. 2

2.2 Application SDK Components 2

Fundamentals

3.1 Board Addressing.. 3

3.1.1 Board Handles.. 3

3.1.2 IP Address and Port ... 3

3.1.2.1 Configuring the Network Interface3

3.2 Programming Examples 4

3.2.1 Constants.. 4

3.2.2 Data Types ... 4

3.3 Required Function Calls 4

Sessions and Transactions

4.1 Overview .. 5

4.1.1 Blocking Behavior ... 5

4.1.2 Thread Safety ... 5

4.2 Concurrent Transactions............................ 5

4.3 Errors ... 5

4.3.1 Error Passing Mechanism 5

4.3.2 Error Handling ... 6

4.3.3 Error Codes .. 6

Module-Independent Functions

5.1 Overview .. 8

5.2 API Initialization and Shutdown 8

5.2.1 s24xx_ApiOpen()... 8

5.2.2 S24xx_ApiClose() ... 8

5.3 Session Initialization and Shutdown.......... 9

5.3.1 s24xx_SessionOpen() 9

5.3.2 s24xx_SessionClose() 9

5.4 Error Functions ... 10

5.4.1 s24xx_ErrorText() ... 10

5.5 Status and Control11

5.5.1 s24xx_SetTimeout()....................................... 11

5.5.2 s24xx_ResetIo() ... 11

5.5.3 s24xx_GetVersionInfo() 12

5.6 Timestamp Functions12

5.6.1 s24xx_ReadTimestamp() 12

5.6.2 s24xx_WriteTimestamp() 13

Model 2410 Digital I/O Module

6.1 Overview ...14

6.2 Digital I/O Functions14

6.2.1 s2410_SetDebounceTime() 14

6.2.2 s2410_ReadDin() ... 15

6.2.3 s2410_ReadDout() ... 15

6.2.4 s2410_WriteDout() .. 16

6.2.5 s2410_SetDoutMode()................................... 16

6.2.6 s2410_WritePwm().. 17

6.3 Utility Functions...17

6.3.1 s2410_SetLedBrightness()............................. 17

6.4 Event Capture Functions...........................18

6.4.1 Overview.. 18

6.4.2 s2410_ReadCapFlags().................................. 18

6.4.3 s2410_AsyncCapBegin() 19

6.4.3.1 Callback Function 19

6.4.4 s2410_AsyncCapEnd() 21

6.4.5 s2410_WriteCapPolarity() 22

6.4.6 s2410_WriteCapContinuous() 22

6.4.7 s2410_WriteCapOneshot() 23

6.4.8 s2410_WriteCapDisable() 23

6.4.9 s2410_WriteCapTimer()................................ 24

Model 2426 Multi-Function I/O Module

7.1 Overview ...25

7.2 Digital I/O Functions25

7.2.1 s2426_SetDebounceTime() 25

7.2.2 s2426_ReadDin() ... 26

7.2.3 s2426_ReadDout() ... 26

7.2.4 s2426_SetDoutMode()................................... 27

7.2.5 s2426_WriteDout() .. 27

7.2.6 s2426_WritePwm().. 28

Sensoray 24xx Programming Guide ii Table of Contents

Table of Contents

7.3 Analog I/O Functions 28

7.3.1 s2426_WriteAout() .. 28

7.3.2 s2426_ReadAout() ... 29

7.3.3 s2426_ReadAdc() .. 29

7.4 Encoder Functions..................................... 30

7.4.1 s2426_ReadEncoderCounts() 30

7.4.2 s2426_WriteEncoderMode() 30

7.4.3 s2426_WriteEncoderPreload()....................... 31

7.4.4 s2426_ReadEncoderPreload() 31

7.5 Comport Functions32

7.5.1 s2426_ComportOpen() 32

7.5.2 s2426_ComportClose().................................. 32

7.5.3 s2426_ComportRead()................................... 33

7.5.4 s2426_ComportWrite().................................. 34

7.5.5 s2426_ComportIoctl().................................... 35

Sensoray 24xx Programming Guide 1 Introduction

Chapter 1: Introduction

1.1 Scope

This document describes the application programming interface (API) for Sensoray’s Model 24xx product family of Ethernet

industrial I/O modules.

1.2 Description

The API is a middleware library that will interface one or more Sensoray Model 24xx modules (e.g., Model 2410 48 Channel

Digital I/O, Model 2426 Multi-Function I/O, etc.) to an application program of your design. A rich set of API functions provides

access to all resources on the various types of modules found in the 24xx family. The API supports any arbitrary number of

modules and any combination of module types, limited only by system resources.

Linux and Windows libraries are supplied in the SDK distribution media.

1.2.1 Software Hierarchy

The middleware consists of an executable that serves as an interface between the application program and Ethernet network. The

Windows version is implemented as a dynamic link library, S24xx.DLL. The Linux version is a static library, lib24xx.a.

Figure 1 illustrates the relationships between the middleware and related software components.

Figure 1: Software hierarchy.

Application Program

24xx Middleware

Socket API

HARDWARE
ACCESS

Sensoray 24xx Programming Guide 2 Installation

Chapter 2: Installation

2.1 Executable Software Components

The middleware is dependent on a network API, so a suitable socket interface must be installed and properly configured. In

addition, the middleware must be installed on a 24xx client system as described below.

2.1.1 Windows

Dynamic link library file S24xx.DLL must be located in either the directory containing the application that uses it, or in one of the

directories in the operating system’s DLL search path (e.g., “C:\WINDOWS\SYSTEM\SYSTEM32”).

2.1.2 Linux

Library file lib24xx.a must be located in the linker’s library search path. You can locate the library in one of the linker’s default

search path directories or, alternatively, you may explicitly specify the path of the library when invoking the linker. As an example

of the latter, you could locate the library in your application project’s directory and use a command like this to specify the library

path:

 gcc -g -o clientapp clientapp.o -L. -l24xx

In this case, the “-L.” indicates that the current directory is to be searched for library files, and the “-l24xx” requests linking of

the lib24xx.a library file.

2.2 Application SDK Components

Distribution media for the Model 24xx family includes the API libraries, documentation, sample applications and other source

code files:

s24xx.dll Windows API dynamic link library.

s24xx.lib Windows import library.

s24xx.a Linux API static library.

s24xx.h API declarations. Include this in all C/C++ application modules that call API library functions.

stypes.h API types. This is required by S24xx.h.

Sensoray 24xx Programming Guide 3 Fundamentals

Chapter 3: Fundamentals

3.1 Board Addressing

3.1.1 Board Handles

Every Model 24xx I/O module is assigned a reference number called a session handle. Many of the API functions include this

handle as an argument.

3.1.2 IP Address and Port

Each module must be configured by assigning it a unique network address and, if desired, unique port numbers. The network

address is the Internet Protocol (IP) address at which the module resides, and the port numbers specify the Telnet and HTTP ports

to use.

Every I/O module has an identical factory-configured IP address and port number. The IP address is set to 192.168.24.xx, where

xx is the last two digits of the model number. For example, Model 7410 Digital I/O modules are set to 192.168.24.10. All boards

are factory configured to use port 23 for Telnet and port 80 for HTTP. If the default address or port numbers are incompatible with

your network, or if the module’s IP address conflicts with another host, it will be necessary to change the module’s network

settings. If you will not be operating the I/O module on a public network, we recommend that you assign IP addresses that are

specifically reserved for private networks, such as 10.x.x.x or 192.168.x.x.

3.1.2.1 Configuring the Network Interface

1. Connect the module to your network with an Ethernet patch cable, Category-5 or higher. Use a crossover cable if you are

connecting the module directly to a computer, otherwise use a standard patch cable. Note: this network need not be the one the

module will operate on; it will only be used to configure the module.

2. Apply 24VDC power to the module.

3. Switch to Configuration mode. Hold down the module’s CONFIG pushbutton while you press and then release the RST

pushbutton. The blue LED under the CONFIG pushbutton will light when the module is in Configuration mode. If multiple

modules are connected to your network, ensure that only one module is in Configuration mode.

4. Assign a temporary IP address. The temporary address will only be used during configuration. It is recommended that this

temporary address not be the same as the permanent address you will be assigning to the module later. Choose a temporary

address that is unique and reachable on your configuration network.

Run ARP with this command line:

arp -s <temp_addr> 08-00-56-FF-FF-FF

Example:
arp -s 192.168.1.25 08-00-56-FF-FF-FF

Windows

You can do this in either of the following ways:

• Navigate to Start | Run, then type the command into the dialog box and click OK.

• Open a console window, then type the command at the shell prompt followed by Enter.

Linux

Open a shell, then type the command at the shell prompt followed by Enter.

5. Open this URL from a web browser:

http://<temp_addr>/config.htm

Example:

http://192.168.1.25/config.htm

The module’s Configuration web page should appear in your browser window.

6. Program the permanent network settings. In the designated field on the Configuration web page, enter the permanent IP

Sensoray 24xx Programming Guide 4 Fundamentals

address you chose earlier. If necessary, also enter a new netmask and gateway address. Click the Submit button and wait for

the page to reload.

7. Reset the module. Press and release the RST pushbutton. Your permanent network settings are now in effect.

3.2 Programming Examples

The C programming language has been used for all programming examples.

3.2.1 Constants

Many of the examples specify symbolic constants that are defined in s24xx.h, which can be found on the distribution media.

3.2.2 Data Types

In most cases, data values passed to or received from library functions belong to a small set of fundamental data types. All of these

data types are listed in Table 1. Data types are referenced by their C-language type names, as shown in the left column of the table.

A few functions make use of structures that are composites of the fundamental types. All structures are defined in header file

s24xx.h.

3.3 Required Function Calls

Some library functions are used universally in all applications, while others, depending on application requirements, may or may

not be used. All applications must, as a minimum, perform the following steps:

1. Call S24xx_ApiOpen() to initialize the API. This should always be the first API function executed by a client application.

2. For each I/O module, call s24xx_SessionOpen() to open a communication session with it.

3. To guarantee proper cleanup when your application terminates, call S24xx_SessionClose() for each previously opened

session, and then call s24xx_ApiClose() after all sessions have been closed.

Table 1: Data types used by library functions

Type Name Description

u8 8-bit unsigned integer

s16/u16 16-bit signed/unsigned integer

s32/u32 32-bit signed/unsigned integer

BOOL 32-bit integer (0=false, other=true)

HSESSION void pointer (session handle)

HEVCAP void pointer (event notification system handle)

Sensoray 24xx Programming Guide 5 Sessions and Transactions

Chapter 4: Sessions and Transactions

4.1 Overview

Most API functions involve transactions between the client and an I/O module over a telnet session. When the application program

invokes a transaction by calling an API function, the API internally executes a four-step process:

• Translate the API function and its arguments to an equivalent shell command.

• Send the command to the I/O module via telnet.

• Receive the reply from the I/O module via telnet.

• Translate the reply to the form expected by the application program.

Transaction functions are designed to insulate the application programmer from the cumbersome details of network programming

and packet parsing.

4.1.1 Blocking Behavior

All transaction functions are blocking functions, which means that calls to those functions will not return until the transaction (i.e.,

the above four-step process) has completed.

4.1.2 Thread Safety

All transaction functions are thread safe, so it is permissible for multiple API calls to be in progress at the same time on a single

session. For example, an application may be partitioned into multiple threads (e.g., analog I/O thread, digital I/O thread, serial

communication thread) such that each thread asynchronously invokes its own private transactions over a common session. In most

cases, a thread will be blocked and its transaction will be held off if another transaction is already in progress on the same session.

4.2 Concurrent Transactions

Each I/O module supports up to three simultaneous telnet sessions and, as a result, up to three overlapped transactions may be in

progress at the same time on an I/O module.

An Ethernet client may run multiple threads and/or processes in which each thread or process concurrently executes simultaneous

transactions with an I/O module, with each transaction running on a unique session. Simultaneous transactions may also involve

more than one Ethernet client. For example, it is permissible for two or three different Ethernet clients to simultaneously execute

transactions on one module. Each of the three possible simultaneous transactions may be invoked by any arbitrary Ethernet client.

For best performance, multi-threaded applications should communicate over dedicated sessions whenever possible (i.e., one thread

per session). This is because transactions on different sessions can be overlapped, whereas transactions that share a common

session are executed serially.

4.3 Errors

Various errors can occur when interacting with I/O modules over a network. When an error is detected during a session transaction,

it is only known to the session in which it occurs. Sessions are not aware of errors in other sessions.

When an error is detected, the currently executing API function is terminated and, if the error is classified as “fatal,” the error is

permanently logged to the session. Subsequent transaction attempts on the same session will fail if a fatal error has been logged.

Each session’s error log is retained across multiple transaction attempts, effectively propagating a fatal error across any number of

API calls, client threads, and client network interfaces.

4.3.1 Error Passing Mechanism

Most API functions have an argument named err, which is a pointer to an error code that is allocated by the calling thread. Each

thread typically sets its error code to ERR_NONE (zero) before calling an API function to indicate no errors are pending. Every

subsequent call to an API function may change the value of the error code. If the error code is not ERR_NONE when an API function

is called, the function will be aborted and the error code will not be modified. Because of this “error propagation” behavior, it may

not be necessary to check for errors at the end of every transaction. Instead, the application may be designed to catch errors at the

Sensoray 24xx Programming Guide 6 Sessions and Transactions

end of a sequence of transactions, but only if it doesn’t need to know exactly where in the sequence the error occurred. This is done

by setting the error code to ERR_NONE once before calling a sequence of API functions and then checking the error code after the

entire sequence has executed to determine if any errors occurred during the sequence.

This error propagation paradigm includes s24xx_SessionOpen(), which will set an appropriate error code and return NULL if it

fails to create a new session. Instead of checking for errors after calling s24xx_SessionOpen(), the application may continue

onward and attempt transactions as if the session had been successfully opened. All such attempts will fail and leave the error code

unchanged.

4.3.2 Error Handling

Most API functions return a boolean that indicates whether the operation completed successfully. False (zero) is returned if the

operation failed, otherwise True (non-zero) is returned. These functions return False if an error occurs during function execution or

if a previously detected error is pending when the function is called.

Programming languages typically define False as zero, but True has no universally accepted definition. Consequently, in the case

of API functions that return a boolean value, that value should generally be compared to False when deciding if an error occurred.

For example, in VB.NET this is the recommended practice:

 If s24xx_SomeFunction() = False Then

 ' handle error ...

 Else

 ' do this if no error ...

 Endif

In addition, most functions include in their argument lists a pointer to the caller’s error code. When a function returns False (thus

indicating an error has occurred), the error type can be determined by inspecting the error code. The application can then take

corrective action based on the type of error that was detected.

It is not possible to restore communication on a session that has logged a fatal error; the session must be closed and, if

communication is to be resumed, a new session must be opened.

4.3.3 Error Codes

Symbolic Name Description

ERR_NONE No errors.

Initialization Errors

ERR_MALLOC Internal memory allocation failed.

ERR_SOCKETCREATE Failed to create socket.

ERR_SESSIONCONNECT Failed to open a TCP connection t the I/O module’s telnet server.

ERR_TOOMANYSESSIONS The I/O module’s telnet server is already running the maximum number of sessions.

Most I/O modules are limited to three concurrent sessions.

ERR_OPENSHELL Failed remote shell login.

ERR_THREADCREATE Failed to create internal thread.

ERR_CRITSECTCREATE Failed to create internal critical section.

ERR_CREATEMUTEX Failed to create internal mutex.

Fatal (unrecoverable) Run-time Errors

ERR_INVALIDSESSION Session handle is zero. This can happen if your application unsuccessfully attempted to

open a session and then continues on as if the session had opened.

ERR_SOCKET Socket error.

ERR_CONNCLOSED The session’s TCP connection closed unexpectedly. This can happen if an I/O module’s

watchdog times out due to network inactivity.

ERR_NETWORKWRITE The socket failed to transmit to the I/O module.

Sensoray 24xx Programming Guide 7 Sessions and Transactions

ERR_TIMEOUT Timed out waiting for a reply from the I/O module.

Non-fatal (recoverable) Run-time Errors

ERR_COMPORTATTACH Failed to attach session to remote comport. This can happen if the remote port is already

attached to another telnet session.

ERR_SHELLCOMMAND Invalid shell command. For example:

* Invalid channel number, which does not exist on the target I/O module.

* A numerical value exceeds permitted limits.

* Transaction is not supported by the I/O module type (e.g., performing a digital I/O

action on an analog I/O module).

ERR_RSPSIZE Invalid reply received from I/O module.

ERR_CMDARG Invalid command argument.

ERR_BUFWOULDOVERFLOW Operation would overflow receive buffer.

ERR_COMPORTWASATTACHED The session is attached to a remote comport and an attempt was made to execute a

non-comport transaction.

ERR_COMPORTUNATTACHED The session is not attached to a remote comport and an attempt was made to execute a

comport transaction.

Symbolic Name Description

Sensoray 24xx Programming Guide 8 Module-Independent Functions

Chapter 5: Module-Independent Functions

5.1 Overview

The API functions discussed in this chapter are common to all I/O module types.

5.2 API Initialization and Shutdown

5.2.1 s24xx_ApiOpen()

Function: Open and initialize the API.

Prototype: BOOL s24xx_ApiOpen(void);

Returns: Returns a non-zero value if successful, or zero if the operation failed. This can fail if the version number of the

socket API is incompatible with middleware, or if TCP/IP is not properly configured on the client.

Notes: s24xx_ApiOpen() must be successfully invoked before any other middleware functions are called. Each client

process must call this function exactly once. A multi-threaded application must invoke this once before any other

API functions are called by any of the application’s threads.

Example: See section 5.4.1.

5.2.2 S24xx_ApiClose()

Function: Close the API.

Prototype: void s24xx_ApiClose(void);

Returns: None.

Notes: If an earlier call to s24xx_ApiOpen() was successful, this function must be called before the application closes to

ensure that the API shuts down gracefully and properly releases all resources. If an error code was returned by

s24xx_ApiOpen(), however, the application should not call s24xx_ApiClose(). This must be the last API

function called by the application.

Example: See section 5.4.1.

Sensoray 24xx Programming Guide 9 Module-Independent Functions

5.3 Session Initialization and Shutdown

5.3.1 s24xx_SessionOpen()

Function: Open a communication session with an I/O module.

Prototype: BOOL s24xx_SessionOpen(HSESSION *sess, u32 *err, u16 model, const char *addr, u16 port, u32 ms);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Notes: After opening a session for an I/O module, the application may use the session handle in all other functions that

require it.

Example: See section 5.4.1.

5.3.2 s24xx_SessionClose()

Function: Terminate a communication session with an I/O module.

Prototype: void s24xx_BoardClose(HSESSION sess);

Returns: None.

Notes: Each session that has been established by s24xx_SessionOpen() must be closed when it is no longer needed by

an application. s24xx_SessionClose() severs the communication link between the application program and the

I/O module. The session handle is no longer valid after this call.

s24xx_SessionClose() does not alter the state of the module and the module will continue any autonomous

operations already in progress. Since all communications will be severed between the client and the module, the

application should ensure that all I/O interfaces are in appropriate states when s24xx_SessionClose() is called.

Example: See section 5.4.1.

Argument Description

sess Pointer to storage that will receive the session handle. The target storage will be set to

zero if a session failed to open.

err Pointer to error code. See Section 4.3.1 for details.

model Model number of the I/O module (e.g., 2410, 2426, etc.)

addr Pointer to a null-terminated string that specifies the I/O module’s IP address in dotted

decimal format.

port Telnet port number used by the I/O board. Use the standard telnet port number (23)

unless the board has been reconfigured to use a non-standard port number.

ms Maximum amount of time to wait (in milliseconds) for the session to be established.

This can be relatively short for dedicated LANs, but longer times may be needed if

the I/O board is remotely located.

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

Sensoray 24xx Programming Guide 10 Module-Independent Functions

5.4 Error Functions

5.4.1 s24xx_ErrorText()

Function: Return an error description string.

Prototype: const char * s24xx_ErrorText(u32 err);

Returns: Pointer to a text string that describes the error code contained in err.

Example: // A simple application program.

int main(void)

{

 int rtnval = 1;

 u32 err = ERR_NONE;

 char ipaddr[] = "192.168.24.10"

 HSESSION sess;

 // Open the API.

 if (!s24xx_ApiOpen())

 printf("Failed to open API\n");

 else {

 // Open a session on a Model 2410 I/O module.

 if (!s24xx_SessionOpen(&sess, &err, 2410, ipaddr, 23, 1000)) {

 printf("Error: %s\n", s24xx_ErrorText(err));

 rtnval = err;

 } else {

 // ... perform I/O operations as required by the application ...

 s24xx_SessionClose(sess); // Close the session and API.

 }

 s24xx_ApiClose();

 }

 return rtnval;

}

Argument Description

err Error code. See Section 4.3.3 for list of error codes.

Sensoray 24xx Programming Guide 11 Module-Independent Functions

5.5 Status and Control

5.5.1 s24xx_SetTimeout()

Function: Configure a session’s network watchdog timer.

Prototype: BOOL s24xx_SetTimeout(SESSION sess, u32 *err, u32 count, u32 units, u32 action);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Notes: Each session employs a timer to detect the absence of communications with clients. If no communication is

received from a client within the specified time interval, the network watchdog will time-out and the specified

action will be taken. Upon time-out, the session is automatically closed. This behavior ensures that the server

session will be freed for other uses and all I/O will be (optionally) reset in the event the client shuts down

abnormally.

By default, the network watchdog timer is set to five minutes when a session is opened, and action is set to

ACTION_NONE. If these defaults suit the application then there is no need to call this function.

Upon executing this function, the new time interval is effective immediately and the watchdog timer is restarted.

The time interval may be set to zero to disable the watchdog timer. This should be avoided except during

application development, as it could make it impossible to open new sessions if the client fails to properly close

previous sessions.

Example: // Set the watchdog interval to 3.5 seconds, with no I/O reset upon time-out.

u32 err = ERR_NONE;

if (!s24xx_SetTimeout(sess, &err, 3500, UNITS_MILLISECONDS, ACTION_NONE))

 printf("Error: %s\n", s24xx_ErrorText(err));

5.5.2 s24xx_ResetIo()

Function: Reset all I/O interfaces to their default power-up condition.

Prototype: BOOL s24xx_ResetIo(HSESSION sess, u32 *err);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Notes: This function resets all I/O interfaces on the target module. For example, digital and analog outputs will be set to

their default power-up states. The module will not reboot, and the session used to invoke this function will remain

open. Typically, this function is only used during application development.

Example: // Reset all I/O interfaces.

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

count Time interval specified in seconds or milliseconds. Set to zero to disable watchdog

(not recommended for production software).

units Time units: UNITS_MILLISECONDS or UNITS_SECONDS

action Action to be taken upon time-out:

ACTION_NONE - terminate the session, but don’t reset any I/O interfaces

ACTION_RESET - terminate the session and reset all I/O interfaces

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

Sensoray 24xx Programming Guide 12 Module-Independent Functions

u32 err = ERR_NONE;

if (!s24xx_ResetIo(sess, &err))

 printf("Error: %s\n", s24xx_ErrorText(err));

5.5.3 s24xx_GetVersionInfo()

Function: Read a module’s firmware version information.

Prototype: BOOL s24xx_GetVersionInfo(HSESSION sess, u32 *err, char *buf, u32 len, BOOL *secondary);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Example: // Fetch and display firmware version info.

char buf[100];

BOOL secondary;

u32 err = ERR_NONE;

if (!s24xx_GetVersionInfo(sess, &err, buf, sizeof(buf), &secondary))

 printf("Error: %s\n", s24xx_ErrorText(err));

else

 printf("Firmware version: %s (%s)\n", buf, secondary ? "secondary" : "primary");

5.6 Timestamp Functions

Every I/O module maintains an independent clock that is used to timestamp data returned by various API functions. The clock

starts at zero upon module boot-up or reset and then increments every microsecond. The 32-bit clock overflows (i.e., restarts at

zero) approximately every 71.5 minutes.

5.6.1 s24xx_ReadTimestamp()

Function: Read module’s system time.

Prototype: BOOL s24xx_ReadTimestamp(SESSION sess, u32 *err, u32 *timestamp);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Example: // Read and display the current timestamp.

u32 err = ERR_NONE;

u32 systime;

if (!s24xx_ReadTimestamp(sess, &err, ×tamp))

 printf("Error: %s\n", s24xx_ErrorText(err));

else

 printf("Timestamp = %d microseconds\n", timestamp);

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

buf Pointer to buffer that will receive version number string. Set to NULL if string is not

needed.

len Size of buffer that will receive the version number string. Set to zero if not needed.

secondary Pointer to buffer that receives indication that secondary firmware is executing. Set to

NULL if not needed. If not NULL, the buffer will be set to False if the factory-installed

base firmware is running, or True if upgraded firmware is running.

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

timestamp Pointer to buffer that will receive the module’s system time.

Sensoray 24xx Programming Guide 13 Module-Independent Functions

5.6.2 s24xx_WriteTimestamp()

Function: Set module’s system time.

Prototype: BOOL s24xx_WriteTimestamp(SESSION sess, u32 *err, u32 systime);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Notes: This function forces a module’s system clock to a desired initial time.

Example: // Force the system clock to zero.

u32 err = ERR_NONE;

if (!s24xx_WriteTimestamp(sess, &err, 0))

 printf("Error: %s\n", s24xx_ErrorText(err));

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

timestamp Module’s new system time, in microseconds.

Sensoray 24xx Programming Guide 14 Model 2410 Digital I/O Module

Chapter 6: Model 2410 Digital I/O Module

6.1 Overview

The API functions in this chapter are used to monitor and control Model 2410 48-channel digital I/O modules. They are applicable

only to Model 2410 I/O modules. Any attempt to call them for other I/O module types will result in a ERR_SHELLCOMMAND

transaction error.

Several of these API functions convey information for all 48 DIO channels through an array of three 16-bit words, with each bit

representing one DIO channel. In such cases, the first word (array index 0) represents DIO channels 0-15 (lsb-msb), the second

word represents channels 16-31, and the third word represents channels 32-47.

6.2 Digital I/O Functions

6.2.1 s2410_SetDebounceTime()

Function: Program the debounce time interval of one digital input channel.

Prototype: BOOL s2410_SetDebounceInterval(SESSION sess, u32 *err, u8 chan, u8 msec);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Notes: Physical input states are sampled periodically at one millisecond intervals and passed through a debounce filter. A

digital input is regarded to be in a particular state only after it has held steady in that state for its debounce interval.

For example, consider the case of a digital input channel that has a 30 millisecond debounce interval. If the channel

has been in the inactive state for a long time and then it switches to the active state, s2410_ReadDin() will not

indicate the new (active) state until 30 milliseconds after the physical input became active. If the input goes active

and then switches to inactive before the 30 milliseconds has elapsed, s2410_ReadDin() will never indicate that the

input is active.

Upon boot-up, all digital inputs are configured to have a ten millisecond debounce interval by default.

Example: // Configure channel 3 for a 50 millisecond debounce interval.

u32 err = ERR_NONE;

if (!s2410_SetDebounceTime(sess, &err, 3, 50))

 printf("Error: %s\n", s24xx_ErrorText(err));

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

chan DIO channel number: 0 to 47.

msec Debounce time interval in milliseconds: 0 to 255.

Sensoray 24xx Programming Guide 15 Model 2410 Digital I/O Module

6.2.2 s2410_ReadDin()

Function: Read the debounced physical states of all DIO channels.

Prototype: BOOL s2410_ReadDin(SESSION sess, u32 *err, u16 *states);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Notes: Every DIO channel includes a monitoring circuit that enables that channel’s physical state to be read. This function

acquires a snapshot of the physical state of each channel without regard for whether the channel is driven by its

on-board output driver or by an externally generated signal.

Physical states are sampled in parallel (all 48 channels are sampled simultaneously) at one millisecond intervals.

Sample data are passed through a debounce filter which may cause latency or, in the case of rapidly changing

physical states, undetected state changes. Consequently, the values returned in states[] may not accurately reflect

the instantaneous physical states of channels that have changed within the debounce interval.

Example: // Read and display the debounced input states of all DIO channels.

u16 states[3];

u32 err = ERR_NONE;

if (!s2410_ReadDin(sess, &err, states))

 printf("Error: %s\n", s24xx_ErrorText(err));

else

 printf("input states: %04x %04x %04x\n", states[2], states[1], states[0]);

6.2.3 s2410_ReadDout()

Function: Read the programmed output states of all DIO channels.

Prototype: BOOL s2410_ReadDout(SESSION sess, u32 *err, u16 *states);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Notes: This function reads the programmed states of all DIO output drivers. Note that these states may differ from those

returned by s2410_ReadDin() because channels can be driven by off-board signals as well as on-board drivers.

Also, in the case of channels operating in PWM output mode, the instantaneous driver states are determined by

each channel’s PWM generator.

Example: // Get all DIO output states.

u16 states[3];

u32 err = ERR_NONE;

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

states Pointer to an array that will receive the state values. Each bit has the following

meaning:

1 - active state (driven low by on-board driver or off-board signal).

0 - inactive state (pulled high).

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

states Pointer to an array that will receive the state values. Each bit has the following

meaning:

1 - active state (driven low by on-board driver).

0 - inactive state (pulled high by on-board driver or driven low by off-board signal).

Sensoray 24xx Programming Guide 16 Model 2410 Digital I/O Module

if (!s2410_ReadDout(sess, &err, states))

 printf("Error: %s\n", s24xx_ErrorText(err));

else

 printf("driver states: %04x %04x %04x\n", states[2], states[1], states[0]);

6.2.4 s2410_WriteDout()

Function: Programs the output states of all DIO channels.

Prototype: BOOL s2410_WriteDout(SESSION sess, u32 *err, u16 *states);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Notes: This function programs the states of all DIO output drivers of channels that are operating in the Standard output

mode. Note that this has no effect on channels operating in the PWM output mode, as their drivers are

autonomously controlled by PWM generators.

Example: // Program all DIO output states.

u32 err = ERR_NONE;

u16 states[] = { 0x0123, 0x4567, &0x89AB }; // desired DIO states

if (!2410_WriteDout(sess, &err, states))

 printf("Error: %s\n", s24xx_ErrorText(err));

6.2.5 s2410_SetDoutMode()

Function: Program the output operating mode of one DIO channel.

Prototype: BOOL s2410_SetDoutMode(SESSION sess, u32 *err, u8 chan, u32 mode);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Notes: Each channel may be independently configured to operate in either Standard mode or PWM mode. When operating

in Standard mode, a channel’s output state can be manually programmed by calling s2410_WriteDout(). In PWM

mode, however, the state is automatically controlled by the I/O module, with duty cycle and frequency

programmed by s2410_WritePwm().

Example: See section 6.2.6.

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

states Pointer to array that contains the desired output states. Each bit has the following

meaning:

1 - active state (driven low by on-board driver).

0 - inactive state (pulled high by on-board driver or driven low by off-board signal).

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

chan Channel number in the range 0 to 47.

mode Channel operating mode: DOUT2410_MODE_STANDARD or DOUT2410_MODE_PWM.

Sensoray 24xx Programming Guide 17 Model 2410 Digital I/O Module

6.2.6 s2410_WritePwm()

Function: Program the PWM ratio for one DIO channel.

Prototype: BOOL s2410_WritePwm(SESSION sess, u32 *err, u8 chan, u16 ontime, u16 offtime);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Notes: This function applies to channels operating in PWM mode; it has no affect on channels operating in Standard mode.

The ontime and offtime arguments specify the amount of time that the DIO is to be in the active and inactive

states, respectively. If ontime is zero and offtime is non-zero then the DIO output will always be inactive.

Similarly, if offtime is zero and ontime is non-zero then the output will always be active. The output state is

indeterminate if both ontime and offtime are set to zero.

The designated DIO channel will switch to the active state and remain active until ontime has elapsed, then it will

switch to the inactive state and remain in that state until offtime has elapsed. This sequence will repeat with the

same duty cycle and frequency until one of these events occurs:

• The ontime and/or offtime is changed by calling s2410_WritePwm().

• The channel’s operating mode is switched from PWM to Standard. The operating mode can be switched under

software control by calling s2410_SetDoutMode() or s24xx_ResetIo(), and it may also be automatically

switched in response to a module hardware reset.

Example: // Configure DIO channel 5 for PWM mode: on for 20 ms, off for 30 ms.

u32 err = ERR_NONE;

s2410_SetDoutMode(sess, &err, 5, DOUT2410_MODE_PWM);

s2410_SetWritePwm(sess, &err, 5, 20, 30);

if (err != ERR_NONE)

 printf("Error: %s\n", s24xx_ErrorText(err));

6.3 Utility Functions

6.3.1 s2410_SetLedBrightness()

Function: Set the brightness level for all DIO status LEDs.

Prototype: BOOL s2410_SetLedBrightness(SESSION sess, u32 *err, uint intensity);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Notes: This can be used to set LED brightness to a comfortable level or to decrease power consumption. DIO status LEDs

can be completely disabled by setting intensity to 0. Upon boot-up, the LED intensity defaults to 16 (maximum

intensity).

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

chan Channel number in the range 0 to 47.

ontime PWM on time in milliseconds. Range: 0 to 65535.

offtime PWM off time in milliseconds. Range: 0 to 65535.

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

intensity Brightness level: 0 (always off) to 16 (maximum intensity).

Sensoray 24xx Programming Guide 18 Model 2410 Digital I/O Module

Example: // Set LED brightness to 1 (dim, but visible).

u32 err = ERR_NONE;

if (!s2410_SetLedBrightness(sess, &err, 1))

 printf("Error: %s\n", s24xx_ErrorText(err));

6.4 Event Capture Functions

6.4.1 Overview

The module’s 48 digital inputs are sampled by the module once per millisecond. After passing through debounce filters, the

channels are monitored for state changes. Model 2410 implements an event capture system that enables the module to

automatically record occurrences of debounced state changes.

The application program can access records of captured events by polling the module at convenient times, or by activating an

asynchronous notification system that will callback into the application program whenever an event is captured. Application

programs may employ either polling or callbacks to handle captured events, but both methods should not be used simultaneously.

Several API functions issue a command to the event capture system and return when the module acknowledges receipt of the

command. Since the capture system is a synchronous state machine (SM), all received commands are enqueued and then executed

synchronously in the order they were received at the next SM clock. When asynchronous notification is active, the application’s

callback function will be called when each command is executed so that the application can synchronize to the SM. In polled mode,

however, there is no way to know exactly when a command is executed.

Some of the event capture functions convey boolean flags for the 48 DIO channels through an array of three 16-bit words, with

each bit representing one DIO channel. In such cases, the first word (array index 0) represents channels 0-15 (lsb-msb), the second

word represents channels 16-31, and the third word represents channels 32-47.

6.4.2 s2410_ReadCapFlags()

Function: Read event capture flags from all DIO channels.

Prototype: BOOL s2410_ReadCapFlags(SESSION sess, u32 *err, u16 *flags);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Notes: This function reads, and then immediately clears, the event capture flags from all 48 digital input channels. It can

be used to poll for captured events at convenient times. Alternatively, s2410_AsyncCapBegin() may be called to

enable asynchronous event notification and thus make polling unnecessary. As a general rule, an application can

receive notification of captured events either by polling or by means of asynchronous event notification, but these

two methods should not be mixed. s2410_ReadCapFlags() should not be called while asynchronous event

notification is active.

Event flags will accumulate until s2410_ReadCapFlags() is called. When the function is called, all channels that

experienced events since the previous call will be indicated by logic ones in flags[]. All event flags are

synchronously cleared to zero when they are read from the board. If a channel’s event flag is set, and then another

event is detected on that channel before s2410_ReadCapFlags() is called, there will be no indication that two

events have occurred on the channel.

Example: // Poll and display the event capture flags.

u32 err = ERR_NONE;

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

flags Pointer to three-word array that will receive the event flags. Each bit has the following

meaning:

1 - event captured.

0 - no event captured.

Sensoray 24xx Programming Guide 19 Model 2410 Digital I/O Module

u16 flags[3];

if (!s2410_ReadCapFlags(sess, &err, flags))

 printf("Error: %s\n", s24xx_ErrorText(err));

else

 printf("Events: %04x %04x %04x\n", flags[2], flags[1], flags[0]);

6.4.3 s2410_AsyncCapBegin()

Function: Enable asynchronous notifications for capture system events.

Prototype: HEVCAP s2410_AsyncCapBegin(const char *addr, u32 *err, u16 port, EVENT_CBK callback, u32 msec);

Returns: Handle to asynchronous notification system. This will be non-zero if the operation was successful, otherwise

NULL is returned and err will contain the associated error code.

Notes: s2410_AsyncCapBegin() activates a notification system that will asynchronously call an application function (a

“callback”) in response to various events that occur on the module. A new, private session is opened on the module

to support the notification system. Consequently, a free session must be available on the module when this function

is called.

When the notification system is activated, the callback function will be called once with message type

CAPMSG_ATTACH (see section 6.4.3.1 for message types) to inform the application that the notification system has

activated.

Example: // Activate asynchronous event notifications.

u32 err = ERR_NONE;

if (!s2410_AsyncCapBegin("192.168.24.10", &err, 23, callback, 5000))

 printf("Error: %s\n", s24xx_ErrorText(err));

6.4.3.1 Callback Function

Function: Application callback that handles asynchronous notifications from the event capture system.

Prototype: void callback(char msgtype, const u16 *val);

Notes: The callback function executes in the context of a private thread. Each time it is called, it receives a message type

code that indicates the nature of the notification. Messages are received in the order they were produced so that the

application can synchronize to the capture system state machine.

Argument Description

addr Pointer to a null-terminated string that specifies the I/O module’s IP address.

err Pointer to error code. See Section 4.3.1 for details.

port Telnet port number used by the I/O board. Use the standard telnet port number

(23) unless the board has been reconfigured to use a non-standard port number.

callback Pointer to the application’s callback function. See section 6.4.3.1 for details.

msec Maximum amount of time to wait (in milliseconds) for the session to be

established. This can be relatively short for dedicated LANs, but longer times

may be needed if the I/O board is remotely located.

Argument Description

msgtype Message type code.

val Pointer to additional information that depends on the message

type.

Sensoray 24xx Programming Guide 20 Model 2410 Digital I/O Module

Depending on the message type, additional information may be passed to the callback through val, which is a

pointer to the information. In many cases, the information will be an array of three 16-bit words, where each bit is a

boolean that is associated with one DIO channel.

Example: // A simple callback function that reports capture system events.

void callback(char msgtype, const u16 *val)

{

 switch (msgtype)

 {

 case CAPMSG_ATTACH:

 printf("first callback\n");

 break;

 case CAPMSG_DETACH:

 printf("final callback\n");

 break;

 case CAPMSG_TIMER:

 printf("started timer: %d msec\n", val[0]);

 break;

 case CAPMSG_POLARITY:

 printf("polarities set: %04x %04x %04x\n", val[2], val[1], val[0]);

 break;

 case CAPMSG_CONTINUOUS:

 printf("cont cap enabled: %04x %04x %04x\n", val[2], val[1], val[0]);

 break;

Message Type Code Description

CAPMSG_ATTACH The async notification system has been activated. This is always the first message

received by the callback. It can be used to initialize the application’s event handling

system, if desired. val is not used and should be ignored.

CAPMSG_DETACH The async notification system has shut down. This is always the last message received by

the callback. The notification system will shut down if the application calls

s2410_AsyncCapEnd() or if the connection closes unexpectedly. val is not used and

should be ignored.

CAPMSG_POLARITY Capture polarities have changed as a result of an earlier call to

s2410_WriteCapPolarity(). val points to an array of three words that indicate the new

polarities that are now in effect.

CAPMSG_CONTINUOUS Continuous capturing has been enabled for an arbitrary set of DIO channels in response to

an earlier call to s2410_WriteCapContinuous(). val points to an array of three words

that indicate the channels for which continuous capturing has been enabled.

CAPMSG_ONESHOT One-shot capturing has been enabled for an arbitrary set of DIO channels in response to an

earlier call to s2410_WriteCapOneShot(). val points to an array of three words that

indicate the channels for which one-shot capturing has been enabled.

CAPMSG_DISABLE Capturing has been disabled for an arbitrary set of DIO channels in response to an earlier

call to s2410_WriteCapDisable(). val points to an array of three words that indicate

the channels for which capturing has been disabled.

CAPMSG_EVENT Events have been captured on one or more DIO channels, or the timer started in an earlier

call to s2410_AsyncCapTimer() has timed out. val points to an array of three words that

contain event flags for all 48 DIO channels. If one or more flags are set then the

corresponding channels captured edge events. If no flags are set then the timer timed out

before any events were detected.

CAPMSG_TIMER A timer has started in response to an earlier call to s2410_AsyncCapTimer(). val points

to a single word that contains the time interval, in milliseconds, that remain until time-out.

CAPMSG_ERROR The connection closed unexpectedly. One more callback will follow this one, with

message type set to CAPMSG_DETACH to indicate that the notification system has shut

down.

Sensoray 24xx Programming Guide 21 Model 2410 Digital I/O Module

 case CAPMSG_ONESHOT:

 printf("one-shot cap enabled: %04x %04x %04x\n", val[2], val[1], val[0]);

 break;

 case CAPMSG_DISABLE:

 printf("cap disabled: %04x %04x %04x\n", val[2], val[1], val[0]);

 break;

 case CAPMSG_EVENT:

 if (val[0] | val[1] | val[2])

 printf("captured events: %04x %04x %04x\n", val[2], val[1], val[0]);

 else

 printf("time-out -- no events captured");

 break;

 case CAPMSG_ERROR:

 printf("connection closed unexpectedly\n");

 break;

 default:

 printf("unknown error\n");

 break;

 }

}

6.4.4 s2410_AsyncCapEnd()

Function: Terminate asynchronous notification messages.

Prototype: BOOL s2410_AsyncCapEnd(HEVCAP hevcap, u32 &err);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Notes: This function instructs the asynchronous event notification system to terminate operations. In response, the

application’s callback function will be called one final time, with message type CAPMSG_DETACH, to inform the

application that the notification system has shut down.

s2410_AsyncCapEnd() should only be called if asynchronous event notifications have been enabled by a previous

call to s2410_AsyncCapBegin().

Example: // Shut down the asynchronous event notification system.

u32 err = ERR_NONE;

if (!s2410_AsyncCapEnd(hevcap, &err))

 printf("Error: %s\n", s24xx_ErrorText(err));

Argument Description

hevcap Handle to async event notification system obtained from

s24xx_AsyncCapBegin().

err Pointer to error code. See Section 4.3.1 for details.

Sensoray 24xx Programming Guide 22 Model 2410 Digital I/O Module

6.4.5 s2410_WriteCapPolarity()

Function: Select the polarities of events to be captured on all DIO channels.

Prototype: BOOL s2410_WriteCapPolarity(SESSION sess, u32 *err, u16 *flags);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Notes: This selects the edge transition type that is to be captured on each of the 48 DIO channels. For any given channel,

only one edge may be selected for capture at a time.

If asynchronous event notification is enabled, the application’s callback function will be called with message type

CAPMSG_POLARITY when the specified polarities go into effect.

Example: // Set capture polarities: chan0=inactive-to-active, all others=active-to-inactive.

u32 err = ERR_NONE;

u16 flags[3] = { 0, 0, 1 };

if (!s2410_WriteCapPolarity(sess, &err, flags))

 printf("Error: %s\n", s24xx_ErrorText(err));

6.4.6 s2410_WriteCapContinuous()

Function: Enable continuous event capture on an arbitrary set of DIO channels.

Prototype: BOOL s2410_WriteCapContinuous(SESSION sess, u32 *err, u16 *flags);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Notes: This function enables continuous capture for an arbitrary set of digital input channels. Any channel that is

configured for continuous capture will remain enabled when an event is captured on that channel. This is in

contrast to one-shot capture mode, in which event capturing is automatically disabled when an event is captured.

The boolean bits in flags[] specify the channels that are to be affected. A boolean True enables continuous

capture on the associated channel, while False will leave the channel’s capture mode unchanged. When this

function enables continuous capture on a channel, the channel’s previous capture mode (i.e., disabled or one-shot)

is no longer in effect.

If asynchronous event notification is enabled, the application’s callback function will be called with message type

CAPMSG_CONTINUOUS when the specified channels become enabled for continuous capture.

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

flags Pointer to array that contains capture polarity flags for all 48 digital input

channels. Each bit has the following meaning:

1 - enables capture of inactive-to-active (physical high-to-low) edges.

0 - enables capture of active-to-inactive (physical low-to-high) edges.

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

flags Pointer to array that contains boolean flags for all digital input

channels. Each bit has the following meaning:

1 - enable continuous capture on the channel.

0 - don’t modify the channel’s capture configuration.

Sensoray 24xx Programming Guide 23 Model 2410 Digital I/O Module

Example: // Enable continuous capture on channels 0, 1, and 47.

u32 err = ERR_NONE;

u16 flags[3] = { 0x8000, 0, 3 };

if (!s2410_WriteCapContinuous(sess, &err, flags))

 printf("Error: %s\n", s24xx_ErrorText(err));

6.4.7 s2410_WriteCapOneshot()

Function: Enable one-shot event capture on an arbitrary set of DIO channels.

Prototype: BOOL s2410_WriteCapOneShot(SESSION sess, u32 *err, u16 *flags);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Notes: This function enables one-shot capture for any arbitrary set of digital input channels. When a channel is configured

for one-shot capture, only one event can be captured on that channel. Upon the first event capture for that channel,

capturing will be disabled and no subsequent events will be captured. This is in contrast to continuous capture

mode, in which channels remain enabled for capturing after captures have occurred.

The boolean bits in flags[] specify the channels that are to be affected. A boolean True enables one-shot capture

on the associated channel, while False will leave the channel’s capture mode unchanged. When this function

enables one-shot capture on a channel, the channel’s previous capture mode (i.e., disabled or continuous) is no

longer in effect.

If asynchronous event notification is enabled, the application’s callback function will be called with message type

CAPMSG_ONESHOT when the specified channels become enabled for one-shot capture.

Example: // Enable one-shot capture on channel 8.

u32 err = ERR_NONE;

u16 flags[3] = { 0x8000, 0, 3 };

if (!s2410_WriteCapContinuous(sess, &err, flags))

 printf("Error: %s\n", s24xx_ErrorText(err));

6.4.8 s2410_WriteCapDisable()

Function: Disable event capture on an arbitrary set of DIO channels.

Prototype: BOOL s2410_WriteCapDisable(SESSION sess, u32 *err, u16 *flags);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

flags Pointer to array that contains boolean flags for all digital input

channels. Each bit has the following meaning:

1 - enable one-shot capture on the channel.

0 - don’t modify the channel’s capture configuration.

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

flags Pointer to array that contains boolean flags for all digital input

channels. Each bit has the following meaning:

1 - disable capture on the channel.

0 - don’t modify the channel’s capture configuration.

Sensoray 24xx Programming Guide 24 Model 2410 Digital I/O Module

Notes: This function disables event capturing on an arbitrary set of digital input channels.

The boolean bits in flags[] specify the channels that are to be affected. A boolean True disables capture on the

associated channel, while False will leave the channel’s capture mode unchanged. When this function disables

capturing on a channel, the channel’s previous capture mode (i.e., one-shot or continuous) is no longer in effect.

If asynchronous event notification is enabled, the application’s callback function will be called with message type

CAPMSG_DISABLED when the specified channels become disabled for capture.

Example: // Disable event capturing on channels 0 through 15.

u32 err = ERR_NONE;

u16 flags[3] = { 0, 0, 0xFFFF };

if (!s2410_WriteCapDisable(sess, &err, flags))

 printf("Error: %s\n", s24xx_ErrorText(err));

6.4.9 s2410_WriteCapTimer()

Function: Start a timer that will notify the client if no events are captured within a time interval.

Prototype: BOOL s2410_WriteCapTimer(SESSION sess, u32 *err, u16 msec);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Notes: This API function starts a timer that monitors the elapsed time between successive event captures. If no events are

captured within the specified time interval, the application’s notification callback will be called with message type

CAPMSG_EVENT, with no capture flags asserted. This can be useful in cases where the application expects an event to

be captured within a certain time frame but no events occur during that time.

The timer is cancelled if an event is captured within the specified time interval. If the timer is started and an event

is captured before the time interval expires, the timer will no longer be active.

The application’s callback function will be called with message type CAPMSG_TIMER when the timer is started or

cancelled by this function in order to inform the application of the change in the timer’s operational status.

s2410_WriteCapTimer() should not be called if the application employs polling to detect captured events. It

should only be called when asynchronous event notifications have been enabled by a previous call to

s2410_AsyncCapBegin().

Example: // Send a notification if no events are captured within the next 5 seconds.

u32 err = ERR_NONE;

if (!s2410_WriteCapTimer(sess, &err, 5000))

 printf("Error: %s\n", s24xx_ErrorText(err));

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

msec Time interval, in milliseconds, to wait for an event before issuing a client

notification. Set to zero to disable the timer.

Sensoray 24xx Programming Guide 25 Model 2426 Multi-Function I/O Module

Chapter 7: Model 2426 Multi-Function I/O Module

7.1 Overview

The API functions in this chapter can be used to monitor and control Model 2426 multi-function I/O modules. These functions are

only applicable to Model 2426 I/O modules; attempting to call them for other I/O module types will result in a ERR_SHELLCOMMAND

transaction error.

7.2 Digital I/O Functions

7.2.1 s2426_SetDebounceTime()

Function: Program the debounce time interval of one digital input channel.

Prototype: BOOL s2426_SetDebounceInterval(SESSION sess, u32 *err, u8 chan, u8 msec);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Notes: Physical input states are sampled periodically at one millisecond intervals and passed through a debounce filter. A

digital input is regarded to be in a particular state only after it has held steady in that state for its debounce interval.

For example, consider the case of a digital input channel that has a 30 millisecond debounce interval. If the channel

has been in the inactive state for a long time, and then switches to the active state, s2426_ReadDin() will not

indicate the new (active) state until 30 milliseconds after the physical input switched active. If the input goes active

and then switches to inactive before the 30 milliseconds has elapsed, s2426_ReadDin() will never indicate that the

input is active.

Upon boot-up, all digital inputs are configured to have a ten millisecond debounce interval by default.

Example: // Configure channel 3 for a 50 millisecond debounce interval.

u32 err = ERR_NONE;

if (!s2426_SetDebounceTime(sess, &err, 3, 50))

 printf("Error: %s\n", s24xx_ErrorText(err));

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

chan Channel number in the range 0 to 7.

msec Debounce time interval in milliseconds: 0 to 255.

Sensoray 24xx Programming Guide 26 Model 2426 Multi-Function I/O Module

7.2.2 s2426_ReadDin()

Function: Read the debounced physical states of the eight digital input channels.

Prototype: BOOL s2426_ReadDin(SESSION sess, u32 *err, u8 *states, u32 *timestamp);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Notes: Each digital input channel includes a monitoring circuit that enables the on-board processor to determine the

physical state of the channel. This function acquires a snapshot of the physical state of each channel, no matter

whether the channel is driven by its own output driver or by an externally generated signal.

Physical states are sampled periodically at one millisecond intervals and passed through a debounce filter.

Consequently, states may not accurately reflect the state of a channel that has changed its physical state within

the debounce interval.

Example: // Read digital input states.

u8 states;

u32 err = ERR_NONE;

if (!s2426_ReadDin(sess, &err, &states))

 printf("Error: %s\n", s24xx_ErrorText(err));

7.2.3 s2426_ReadDout()

Function: Read the programmed states of all sixteen digital output channels.

Prototype: BOOL s2426_GetOutputs(SESSION sess, u32 *err, u16 *states);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Example: // Get all programmed digital output states.

u32 err = ERR_NONE;

u16 states;

if (!s2426_ReadDout(sess, &err, &states))

 printf("Error: %s\n", s24xx_ErrorText(err));

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

states Pointer to an application buffer that will receive the physical states of the digital

input channels. Each bit is associated with one channel. For example, bit 7 is

associated with channel 7. Logic one indicates the associated channel is in the

active state (driven low), while logic zero indicates inactive state (pulled high).

timestamp Pointer to buffer that will receive the timestamp. The timestamp is a snapshot of the

I/O module’s system timer at the moment counts is sampled. Set to NULL if the

timestamp is not needed. See section 5.6 for more information about timestamps.

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

states Pointer to an application buffer that will receive the programmed states of the

digital output channels. Each bit is associated with one channel. For example,

bit 7 is associated with channel 7. Logic one indicates the associated channel

is programmed to the active state, while logic zero indicates inactive state.

Sensoray 24xx Programming Guide 27 Model 2426 Multi-Function I/O Module

7.2.4 s2426_SetDoutMode()

Function: Program the operating mode of one digital output channel.

Prototype: BOOL s2426_SetDoutMode(SESSION sess, u32 *err, u8 chan, u32 mode);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Notes: This function configures the operating mode of one digital output channel. Each channel can operate in either the

Standard mode or PWM mode. In Standard mode, the channel state can be manually programmed by calling

s2426_WriteDout(). The state is automatically controlled by the I/O module in PWM mode, with duty cycle and

frequency programmed by calling s2426_WritePwm().

Example: // Configure channel 2 for PWM operation.

u32 err = ERR_NONE;

if (!s2426_SetDoutMode(sess, &err, 2, DOUT2426_MODE_PWM))

 printf("Error: %s\n", s24xx_ErrorText(err));

7.2.5 s2426_WriteDout()

Function: Program all digital output channels.

Prototype: BOOL s2426_WriteDout(SESSION sess, u32 *err, u16 states);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Example: // Program digital outputs to 0x5A17.

u32 err = ERR_NONE;

if (!s2426_WriteDout(sess, &err, 0x5A17))

 printf("Error: %s\n", s24xx_ErrorText(err));

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

chan Channel number in the range 0 to 15.

mode Channel operating mode:

DOUT2426_MODE_STANDARD

DOUT2426_MODE_PWM

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

states Desired output states. Each bit is associated with one channel. For example, bit 7 is

associated with channel 7. Any bit set to one indicates the associated channel is to be set to

the active state (driven low); zero indicates the channel is to be set to the inactive state

(pulled high).

Sensoray 24xx Programming Guide 28 Model 2426 Multi-Function I/O Module

7.2.6 s2426_WritePwm()

Function: Program the PWM ratio for one digital output channel.

Prototype: BOOL s2426_WritePwm(SESSION sess, u32 *err, u8 chan, u16 ontime, u16 offtime);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Notes: This function applies to channels operating in PWM mode; it has no affect on channels operating in Standard mode.

The ontime and offtime arguments specify the amount of time that the channel is to be in the active and inactive

states, respectively. If ontime is zero and offtime is non-zero then the output will always be inactive. Similarly, if

offtime is zero and ontime is non-zero then the output will always be active. The output state is indeterminate if

both ontime and offtime are set to zero.

The designated digital output channel will switch to the active state and remain active until ontime has elapsed,

then it will switch to the inactive state and remain in that state until offtime has elapsed. This sequence will repeat

with the same duty cycle and frequency until one of these events occurs:

• The ontime and/or offtime is changed by calling s2426_WritePwm().

• The channel’s operating mode is switched from PWM to Standard. The operating mode can be switched under

software control by calling s2426_SetDoutMode() or s24xx_ResetIo(), and it may also be automatically

switched in response to a module hardware reset.

Example: // Set the PWM ratio for channel 5: on for 20 ms, off for 30 ms.

u32 err = ERR_NONE;

if (!s2426_WritePwm(sess, &err, 5, 20, 30))

 printf("Error: %s\n", s24xx_ErrorText(err));

7.3 Analog I/O Functions

7.3.1 s2426_WriteAout()

Function: Program the analog output voltage level.

Prototype: BOOL s2426_WriteAout(SESSION sess, u32 *err, s16 setpoint, BOOL correct);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Example: // Program analog output to -5V.

u32 err = ERR_NONE;

if (!s2426_WriteAout(sess, &err, -16384, TRUE))

 printf("Error: %s\n", s24xx_ErrorText(err));

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

chan Channel number in the range 0 to 15.

ontime PWM on time in milliseconds.

offtime PWM off time in milliseconds.

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

setpoint Desired output level: -32768 (-10V) to 32767 (+10V).

correct Set to True to apply calibration correction, or False to write the setpoint directly to the

analog output interface without modification.

Sensoray 24xx Programming Guide 29 Model 2426 Multi-Function I/O Module

7.3.2 s2426_ReadAout()

Function: Read the programmed analog output level.

Prototype: BOOL s2426_ReadAout(SESSION sess, u32 *err, s16 *setpoint);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Example: // Read and display the programmed analog output level.

u32 err = ERR_NONE;

s16 setpoint;

if (!s2426_ReadAout(sess, &err, &setpoint))

 printf("Error: %s\n", s24xx_ErrorText(err));

else

 printf("Aout: %f Volts\n", (double)setpoint / 3276.8);

7.3.3 s2426_ReadAdc()

Function: Read all eight digital input channels.

Prototype: BOOL s2426_ReadAdc(SESSION sess, u32 *err, S2426_ADC_SAMPLE *samples, BOOL timestamps);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Notes: This function returns sample data from the module’s eight analog input channels.

Example: // Read and display the six external analog input channels.

int i;

u32 err = ERR_NONE;

S2426_ADC_SAMPLE samp[8]; // allocate space for 8 chans

if (!s2426_ReadAdc(sess, &err, &samp, TRUE))

 printf("Error: %s\n", s24xx_ErrorText(err));

else {

 for (i = 0; i < 6; i++)

 printf("chan %d: %f at t=%d\n", i, samp[i].volts, samp[i].timestamp);

}

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

setpoint Pointer to buffer that will receive the current analog output level.

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

samples Pointer to an array of eight S2426_ADC_SAMPLE structures. These will be filled with

digitized sample data and, if desired, timestamps for those samples. Channels 0 through 5

measure external signals, while channels 6 and 7 measure on-board reference standards.

timestamps Set to True to receive timestamps with digitized sample data.

Sensoray 24xx Programming Guide 30 Model 2426 Multi-Function I/O Module

7.4 Encoder Functions

7.4.1 s2426_ReadEncoderCounts()

Function: Read the encoder counter.

Prototype: BOOL s2426_ReadEncoderCounts(SESSION sess, u32 *err, u32 *counts, u32 *timestamp);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Notes: Upon exit, counts will contain a snapshot of the encoder counter.

Example: // Get current counts from counter.

u32 err = ERR_NONE;

u32 counts;

if (!s2426_ReadEncoderCounts(sess, &err, &counts, NULL))

 printf("Error: %s\n", s24xx_ErrorText(err));

Example: // Get counts and timestamp.

u32 err = ERR_NONE;

u32 counts;

u32 tstamp;

if (!s2426_ReadEncoderCounts(sess, 12, 3, &counts, &tstamp))

 printf("Error: %s\n", s24xx_ErrorText(err));

else

 printf("counts=%d at t=%d microseconds\n", counts, tstamp);

7.4.2 s2426_WriteEncoderMode()

Function: Program the encoder interface operating mode.

Prototype: BOOL s2426_WriteEncoderMode(SESSION sess, u32 *err, u32 clock, u32 preload);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

counts Pointer to buffer that is to receive the counts.

timestamp Pointer to buffer that will receive the timestamp. The timestamp is a snapshot of the

I/O module’s system timer at the moment counts is sampled. Set to NULL if the

timestamp is not needed. See section 5.6 for more information about timestamps.

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

clock Counter clock mode. Specify one of these values:

NONQUADRATURE - single clock phase (e.g., tachometer)

QUADRATURE_X1 - quadrature clock (e.g., encoder), count at clock frequency

QUADRATURE_X2 - quadrature clock, count at two times the clock frequency

QUADRATURE_X4 - quadrature clock, count at four times the clock frequency

preload Specifies whether an active edge on the index input will cause the counter to be parallel

loaded from the preload register. Specify one of these values:

ENC_PRELOAD_DISABLE - index active edge does not cause counts change

ENC_PRELOAD_ENABLE - index active edge causes counts to change to preload value

Sensoray 24xx Programming Guide 31 Model 2426 Multi-Function I/O Module

Example: // Set count rate to 4x the encoder frequency, with no preload upon index active edge.

u32 err = ERR_NONE;

if (!s2426_WriteEncoderMode(sess, &err, QUADRATURE_X4, ENC_PRELOAD_DISABLE))

 printf("Error: %s\n", s24xx_ErrorText(err));

7.4.3 s2426_WriteEncoderPreload()

Function: Store a value in the encoder interface preload register.

Prototype: BOOL s2426_WriteEncoderPreload(SESSION sess, u32 *err, u32 preload);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Example: // Set preload register to 100.

u32 err = ERR_NONE;

if (!s2426_WriteEncoderPreload(sess, &err, 100))

 printf("Error: %s\n", s24xx_ErrorText(err));

7.4.4 s2426_ReadEncoderPreload()

Function: Return the contents of the encoder interface preload register.

Prototype: BOOL s2426_ReadEncoderPreload(SESSION sess, u32 *err, u32 *preload);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Example: // Read preload register.

u32 err = ERR_NONE;

u32 preload;

if (!s2426_ReadEncoderPreload(sess, &err, &preload))

 printf("Error: %s\n", s24xx_ErrorText(err));

else

 printf("Preload counts: %d\n", preload);

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

preload Value to be written to the preload register.

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

preload Pointer to buffer that will receive preload value.

Sensoray 24xx Programming Guide 32 Model 2426 Multi-Function I/O Module

7.5 Comport Functions

7.5.1 s2426_ComportOpen()

Function: Configure the comport and attach it to the specified session.

Prototype: BOOL s2426_ComportOpen(HSESSION sess, u32 *err, u32 br, u32 parity, u32 databits, u32 stopbits);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Notes: The comport must be attached to a session to enable the client to send or receive data over the module’s serial

communication interface. If the comport is already attached to another session, this function will fail and the error

code will be set to ERR_COMPORTATTACHED.

Example: // Attach session to comport and set to 9600 baud, no parity, 8 data, 1 stop.

u32 err = ERR_NONE;

if (!s2426_ComportOpen(sess, &err, 9600, COMPORT_PARITY_NONE, 8, 1))

 printf("Error: %s\n", s24xx_ErrorText(err));

7.5.2 s2426_ComportClose()

Function: Close comport and detach it from session.

Prototype: BOOL s2426_ComportClose(HSESSION sess, u32 *err);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Notes: This function flushes the target comport’s serial transmitter and receiver queues and detaches the comport from the

current session.

The comport must be attached to the session when this function is called. If the comport is closed, the function will

return False and err will be set to COMPORT_UNATTACHED.

Example: // Close comport.

u32 err = ERR_NONE;

if (!s2426_ComportClose(sess, &err))

 printf("Problem closing comport\n");

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

br Baud rate. Specify any standard value from 110 to 115200.

parity Parity type. Specify one of these values:

COMPORT_PARITY_NONE

COMPORT_PARITY_ODD

COMPORT_PARITY_EVEN

databits Number of data bits per character: 5 to 8.

stopbits Number of stop bits per character: 1 or 2.

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

Sensoray 24xx Programming Guide 33 Model 2426 Multi-Function I/O Module

7.5.3 s2426_ComportRead()

Function: Fetch data and line state events from the comport’s serial receiver queue.

Prototype: int s2426_ComportRead(HSESSION sess, u32 *err, void *buf, int len, BOOL wait);

Returns: One of these values:

Notes: This function transfers received data and line state change notifications from the comport’s serial receiver queue

into buf[]. If stream data was read, a positive value will be returned that indicates the number of bytes copied to

buf. Zero will be returned if the receiver queue is empty or an error occurred. If the underlying connection was

closed, the function will return zero and err will be set to ERR_CONNCLOSED.

Line state change notifications indicate events that cannot be conveyed as stream data, such as parity errors and

incoming line breaks. These notifications appear in their order of occurrence in the receive stream. When this

function returns -1, event flags can be found in buf[0] that indicates the type of line state event (or events) that

occurred, and no other data will be copied to buf.

The comport must be attached to the specified session when this function is called. If the comport is closed, the

function will return zero and err will be set to COMPORT_UNATTACHED.

Example: // Fetch and display received comport data.

char buf[256];

u32 err = ERR_NONE;

// Leave space at end of buf for string terminating NUL char.

int nchars = s2426_ComportRead(sess, &err, buf, sizeof(buf)-1, FALSE);

if (nchars > 0) {

 buf[nchars] = 0; // convert to C string

 printf("data received: %s\n", buf);

} else if (nchars < 0) {

 printf("linestate change(s):\n");

 if (buf[0] & COMPORT_BREAK_ERROR) printf("receive break\n");

 if (buf[0] & COMPORT_FRAMING_ERROR) printf("framing error\n");

 if (buf[0] & COMPORT_PARITY_ERROR) printf("parity error\n");

 if (buf[0] & COMPORT_OVERRUN_ERROR) printf("overrun error\n");

} else if (err == ERR_NONE)

 printf("receive queue is empty\n");

else

 printf("Error: %s\n", s24xx_ErrorText(err));

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

buf Pointer to a buffer that will receive the comport data.

len Size of buf or maximum number of bytes to receive, whichever is smaller.

wait Enable blocking operation. When True, the function will return when data is available or

upon error. When False, the function will return immediately regardless of data availability.

Return Value Description

0 to len Number of received comport bytes that were copied to buf. Zero may indicate an error.

-1 Line state change notification, with event flags stored in buf[0]. Up to four event flags

will be set to True to indicate the associated events were detected: COMPORT_BREAK_ERROR,

COMPORT_FRAMING_ERROR, COMPORT_PARITY_ERROR, and COMPORT_OVERRUN_ERROR.

Sensoray 24xx Programming Guide 34 Model 2426 Multi-Function I/O Module

7.5.4 s2426_ComportWrite()

Function: Enqueue data for transmission on the comport.

Prototype: u32 s2426_ComportWrite(HSESSION sess, u32 *err, void *buf, int len, BOOL wait);

Returns: Number of data bytes that were enqueued for transmission. If an error occurs, zero is returned and an error code is

stored in err.

Notes: This function copies data from buf to the comport’s transmit FIFO. The comport consumes byte data from the

FIFO output and transmits the bytes onto the comport’s physical interface. Data bytes are transmitted in the same

order they were enqueued. Previously enqueued, but unsent data pending in the FIFO will be transmitted before

new data. This function doesn’t actually transmit data on the comport; it only enqueues data for later transmission.

If wait is False and the transmit FIFO would overflow as a result of enqueing all of the new data, only a portion of

the data will be enqueued and the returned value will be less than len.

The comport must be attached to the specified session when this function is called. If the comport is closed, the

function will return zero and err will be set to COMPORT_UNATTACHED.

Example: // Send a text string to the comport.

char msg[] = "This is a test\n";

u32 err = ERR_NONE;

u32 len = sizeof(msg) - 1; // exclude NUL char at end of string

u32 nsent = s2426_ComSend(sess, &err, msg, len, TRUE);

if (nsent == len)

 printf("sent string\n");

else if (err != ERR_NONE)

 printf("Error: %s\n", s24xx_ErrorText(err));

else

 printf("Error: no data sent\n");

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

buf Pointer to a buffer that contains data to be enqueued for transmission.

len Number of bytes to be enqueued.

wait Enable blocking operation. When True, this function will return when data has been

enqueued or upon error. When False, the function will return immediately regardless

of whether data was successfully enqueued.

Sensoray 24xx Programming Guide 35 Model 2426 Multi-Function I/O Module

7.5.5 s2426_ComportIoctl()

Function: Execute an I/O control operation on the comport.

Prototype: BOOL s2426_ComportIoctl(HSESSION sess, u32 *err, u32 ioctl, void *val);

Returns: True if the operation was successful, otherwise False is returned and err will contain the associated error code.

Notes: Some operations (BAUDRATE, PARITY, DATABITS, and STOPBITS) make use of the val argument, while others

(TXBREAKON, TXBREAKOFF and RXFLUSH) don’t. For those that do, setting val to a non-zero value and then calling

this function will cause the comport’s control setting to change to the target value. For example, the comport’s baud

rate can be changed by storing the desired baud rate value in val and then calling this function with the operation

type set to BAUDRATE.

The current setting will remain in effect if val contains zero when this function is called. This can be used to read a

setting without making changes to it. The comport’s current setting, whether new or unchanged, is returned in val.

Upon returning, val indicates the actual setting in effect on the comport, which can differ from the desired setting

if it is a non-standard value. For example, attempting to set the baud rate to 9625 will result in it being set to 9600.

TXBREAKON and TXBREAKOFF are used to begin and end a line break condition on the comport transmitter.

RXFLUSH may be used to “reset” the receive pipeline to compensate for a receive error (e.g., a parity, framing or

overrun). When a receive error occurs, the contents of the receiver pipeline should be considered corrupt and

therefore all queued data should be discarded.

The comport must be attached to the specified session when this function is called. If the comport is closed, the

function will return zero and err will be set to COMPORT_UNATTACHED.

Example: // Set baud rate to 9600.

u32 err = ERR_NONE;

u32 val = 9600;

if (!s2426_ComportIoctl(sess, &err, BAUDRATE, &val))

 printf("Error: %s\n", s24xx_ErrorText(err));

else

 printf("Baud rate was set to %d\n", val);

Argument Description

sess Session handle obtained from s24xx_SessionOpen().

err Pointer to error code. See Section 4.3.1 for details.

ioctl Operation type code. Specify one of these values:

BAUDRATE Set/get baud rate

PARITY Set/get parity type

DATABITS Set/get character size in bits

STOPBITS Set/get number of stop bits per character

TXBREAKON Begin transmit break (val not used)

TXBREAKOFF End transmit break (val not used)

RXFLUSH Flush receive pipeline (val not used)

val Pointer to storage for the operation’s value. Before calling this function, set val to the

desired new value, or to zero to keep the current comport setting. Upon return, val contains

the current setting (in the case of BAUDRATE, PARITY, DATABITS and STOPBITS).

