
Model 2600 Family
Programming Guide

August 21, 2008

Sensoray Co., Inc.
7313 SW Tech Center Dr., Tigard, Oregon 97223

voice: 503.684.8005, fax: 503.684.8164, e-mail: sales@sensoray.com
www.sensoray.com

Sensoray 2600 Programming Guide i Table of Contents

Table of Contents

Introduction

1.1 Scope... 1

1.2 Description ... 1
1.2.1 Block Diagram... 1

Installation

2.1 Executable Software Components 2
2.1.1 Windows .. 2
2.1.2 Linux .. 2
2.1.3 Other .. 2

2.2 Application SDK Components 2
2.2.1 Windows .. 2
2.2.2 Linux .. 2

Fundamentals of Usage

3.1 Board Addressing.. 3
3.1.1 MM Handles .. 3
3.1.2 IP Address .. 3

3.1.2.1 Setting the MM’s IP Address....................3

3.2 Thread-Safety .. 3

3.3 Programming Examples 3
3.3.1 Data Types ... 4

3.4 Library Linking... 4
3.4.1 Windows .. 4
3.4.2 Linux .. 4

3.5 Required Function Calls 4

Initialization and Status Functions

4.1 Overview .. 5

4.2 Middleware Initialization and Shutdown . 5
4.2.1 S26_DriverOpen() ... 5
4.2.2 S26_DriverClose() ... 5
4.2.3 S26_DriverVersion() 6

4.3 MM Initialization and Shutdown............... 6
4.3.1 S26_BoardOpen() .. 6
4.3.2 S26_BoardClose().. 7

4.4 Status and Control 7
4.4.1 S26_ResetNetwork().. 7
4.4.2 S26_ResetIom() ... 8
4.4.3 S26_RegisterAllIoms() 8
4.4.4 Programming Examples................................... 9

4.4.4.1 Windows ... 9
4.4.4.2 Linux ... 10

Transactions

5.1 Overview ...12

5.2 Gateway Transaction Process12
5.2.1 Thread Safety... 13

5.3 Transaction Buffers13

5.4 Blocking Behavior13

5.5 Errors ..13
5.5.1 Gateway Error Propagation 15
5.5.2 Scope of Errors .. 15
5.5.3 Error Handling ... 15

5.6 Time-outs ..15

5.7 Retries ...16

Gateway Transaction Control

6.1 Overview ...17

6.2 Transaction Control Functions.................17
6.2.1 S26_SchedOpen() .. 17
6.2.2 S26_SchedExecute() 17
6.2.3 S26_SchedExecuteStart() 18
6.2.4 S26_SchedExecuteIsResponded() 19
6.2.5 S26_SchedExecuteWait() 19
6.2.6 S26_SchedExecuteFinish() 19

Gateway Action Scheduling

7.1 Overview ...21
7.1.1 Performance Benchmarks 21
7.1.2 Returned IOM Status 21
7.1.3 Argument Lifetime .. 21

7.1.3.1 Outgoing Data ... 21
7.1.3.2 Incoming Data... 21

7.2 Common IOM Actions...............................22
7.2.1 Type-Specific Errors...................................... 22
7.2.2 S26_Sched2600_ClearStatus() 22
7.2.3 S26_Sched2600_GetAddress() 22
7.2.4 S26_Sched2600_GetFirmwareVersion()....... 23
7.2.5 S26_Sched2600_IomGetProductID() 23
7.2.6 S26_Sched2600_Nop() 24

Sensoray 2600 Programming Guide ii Table of Contents

Table of Contents

7.3 Model 2601 Gateway................................. 24
7.3.1 Type-Specific Errors...................................... 24
7.3.2 S26_Sched2601_GetInterlocks() 24
7.3.3 S26_Sched2601_GetLinkStatus().................. 25
7.3.4 S26_Sched2601_SetWatchdog() 26

7.4 Model 2608 Analog IOM 26
7.4.1 Type-Specific Errors...................................... 26
7.4.2 Analog Input Types 26
7.4.3 Calibration ... 27
7.4.4 Reserved EEPROM Locations....................... 27
7.4.5 S26_Sched2608_SetTempUnits().................. 27
7.4.6 S26_Sched2608_GetAins() 28
7.4.7 S26_Sched2608_GetAinTypes() 29
7.4.8 S26_Sched2608_GetAout() 29
7.4.9 S26_Sched2608_GetCalData() 30
7.4.10 S26_Sched2608_ReadEeprom() 30
7.4.11 S26_Sched2608_SetAinTypes() 31
7.4.12 S26_Sched2608_SetAout()............................ 31
7.4.13 S26_Sched2608_SetLineFreq() 32
7.4.14 S26_2608_WriteEeprom()............................. 32

7.5 Model 2610 Digital IOM 33
7.5.1 Type-Specific Errors...................................... 33
7.5.2 S26_Sched2610_GetInputs() 33
7.5.3 S26_Sched2610_GetModes() 34
7.5.4 S26_Sched2610_GetModes32() 34
7.5.5 S26_Sched2610_GetOutputs() 34
7.5.6 S26_Sched2610_GetPwmRatio() 35
7.5.7 S26_Sched2610_SetModes()......................... 35
7.5.8 S26_Sched2610_SetModes32()..................... 36
7.5.9 S26_Sched2610_SetOutputs() 36
7.5.10 S26_Sched2610_SetPwmRatio()................... 37

7.6 Model 2612 Analog IOM37
7.6.1 Type-Specific Errors...................................... 38
7.6.2 Analog Input Modes 38
7.6.3 S26_Sched2612_SetMode() 38
7.6.4 S26_Sched2612_SetVoltages() 39
7.6.5 S26_Sched2612_GetValues() 39
7.6.6 S26_Sched2612_RefreshData()..................... 40
7.6.7 S26_2612_RegisterZero().............................. 40
7.6.8 S26_2612_RegisterSpan() 41
7.6.9 S26_2612_RegisterTare() 42
7.6.10 S26_2612_GetCalibratedValue()................... 42
7.6.11 S26_2612_GetOffset()................................... 43
7.6.12 S26_2612_GetScale() 43
7.6.13 S26_2612_GetTare() 44
7.6.14 S26_2612_SetCalibrations() 44
7.6.15 S26_2612_SaveCalibrations() 45
7.6.16 S26_2612_RestoreCalibrations()................... 45

7.7 Model 2620 Counter IOM46
7.7.1 Type-Specific Errors...................................... 46
7.7.2 S26_Sched2620_GetCounts()........................ 46
7.7.3 S26_Sched2620_GetStatus() 46
7.7.4 S26_Sched2620_SetControlReg() 47
7.7.5 S26_Sched2620_SetCommonControl()......... 48
7.7.6 S26_Sched2620_SetModeEncoder() 48
7.7.7 S26_Sched2620_SetModeFreqMeas() 49
7.7.8 S26_Sched2620_SetModePeriodMeas() 50
7.7.9 S26_Sched2620_SetModePulseGen() 50
7.7.10 S26_Sched2620_SetModePulseMeas() 51
7.7.11 S26_Sched2620_SetModePwmGen() 51
7.7.12 S26_Sched2620_SetMode() 52
7.7.13 S26_Sched2620_SetPreload() 54

7.8 Model 2650 Relay IOM..............................54
7.8.1 Type-Specific Errors...................................... 54
7.8.2 S26_Sched2650_GetInputs() 54
7.8.3 S26_Sched2650_GetOutputs() 55
7.8.4 S26_Sched2650_SetOutputs() 55

7.9 Model 2652 Solid-State Relay IOM..........56
7.9.1 Type-Specific Errors...................................... 56
7.9.2 S26_Sched2652_GetInputs() 56
7.9.3 S26_Sched2652_GetModes() 56
7.9.4 S26_Sched2652_GetOutputs() 57
7.9.5 S26_Sched2652_GetPwmRatio() 57
7.9.6 S26_Sched2652_SetModes()......................... 58
7.9.7 S26_Sched2652_SetOutputs() 58
7.9.8 S26_Sched2652_SetPwmRatio()................... 59

Sensoray 2600 Programming Guide iii Table of Contents

Table of Contents

7.10 Model 2653 Solid-State Relay IOM 59
7.10.1 Type-Specific Errors...................................... 59
7.10.2 S26_Sched2653_GetInputs() 59
7.10.3 S26_Sched2653_GetModes() 60
7.10.4 S26_Sched2653_GetOutputs() 60
7.10.5 S26_Sched2653_GetPwmRatio() 61
7.10.6 S26_Sched2653_SetModes()......................... 61
7.10.7 S26_Sched2653_SetOutputs() 62
7.10.8 S26_Sched2653_SetPwmRatio()................... 62

Comport Transaction Functions

8.1 Overview .. 64
8.1.1 Return Values .. 64

8.2 Configuration ...64
8.2.1 S26_ComSetMode() 64
8.2.2 S26_ComSetBreakChar() 66
8.2.3 S26_ComOpen() .. 67
8.2.4 S26_ComClose().. 67

8.3 Communication ..68
8.3.1 S26_ComSend()... 68
8.3.2 S26_ComReceive() .. 69
8.3.3 S26_ComGetRxCount()................................. 70
8.3.4 S26_ComGetTxCount() 70

8.4 Control ..71
8.4.1 S26_ComStartBreak().................................... 71
8.4.2 S26_ComEndBreak()..................................... 71
8.4.3 S26_ComClearFlags() 72
8.4.4 S26_ComFlush().. 72

Sensoray 2600 Programming Guide 1 Introduction

Chapter 1: Introduction

1.1 Scope
This document describes the contents and use of the distribution media that is supplied with boards belonging to the Sensoray
model 2600 product family.

1.2 Description
The 2600 family middleware is an executable software module that will interface one or more Sensoray Model 2601 Main
Modules (MMs) to a client application program of your design. A rich set of middleware API functions provides access to all
resources on each MM, including its four asynchronous communication ports and I/O module gateway, as well as to all I/O
modules that are connected to the MMs. Any number of MMs may be concurrently interfaced by the middleware, limited only by
system resources.

Two versions of the executable middleware are supplied in the distribution media: one for Windows and one for Linux.

1.2.1 Block Diagram

The middleware consists of a library file that serves as an interface between the application program and Ethernet network. The
Windows version is implemented as a dynamic link library, S2600.DLL. The Linux version is a static library, lib2600.a.

Figure 1 illustrates the relationships between the middleware and related software components.

Figure 1: Block diagram of the software hierarchy.

Application Program

2600 Middleware

Socket API

Operating System

HARDWARE
ACCESS

Sensoray 2600 Programming Guide 2 Installation

Chapter 2: Installation

2.1 Executable Software Components
Because the middleware is dependent on a network socket API, a suitable socket interface must be installed and properly
configured. In addition, the middleware must be correctly installed on a 2600 client system as described in the following
sub-sections.

2.1.1 Windows

Dynamic link library file S2600.DLL must be located in either (1) the directory containing the application that uses it, or (2) in one
of the directories in the operating system’s DLL search path (e.g., “C:\WINDOWS\SYSTEM”).

2.1.2 Linux

Library file lib2600.a must be located in the linker’s library search path. You can either (1) locate the library in one of the
linker’s default search path directories, or (2) explicitly specify the path of the library when invoking the linker. As an example of
the latter, you could locate the library in your application project’s directory and use a command like this to explicitly specify the
library path:

 gcc -g -o clientapp clientapp.o -L. -l2600

In this case, the “-L.” indicates that the current directory is to be searched for library files, and the “-l2600” requests linking of
the lib2600.a library file.

2.1.3 Other

Source files are included in the SDK to enable you to port it to another operating system or cpu. Refer to the linux directory for a
reference design that can serve as a basis for porting.

2.2 Application SDK Components
Distribution media for the Model 2600 family includes source-code files and demo applications that are designed to accelerate the
development of your application program:

2.2.1 Windows

win2600.c Functions used for dynamically linking to S2600.DLL. Compile and link this into any C/C++ application
that calls functions in S2600.DLL.

win2600.h Windows-specific. Include this in all C/C++ application modules that call functions in S2600.DLL.

app2600.h Generic declarations. This file is included in win2600.h.

s26app.h Windows-specific declarations. This file is included in app2600.h.

s2600.bas Declarations required for Visual Basic applications. Include this file in any VB project that calls functions
in S2600.DLL. Note: this is not compatible with VB.NET.

2.2.2 Linux

app2600.h Generic declarations. Include this in all C/C++ application modules that call functions in lib2600.a.

s26app.h Linux-specific declarations. This file is included in app2600.h.

Sensoray 2600 Programming Guide 3 Fundamentals of Usage

Chapter 3: Fundamentals of Usage

3.1 Board Addressing

3.1.1 MM Handles

Each Model 2601 board—which is also referred to as a main module, or simply MM—is assigned a reference number called a
handle. A handle is the logical address of a MM. Many of the middleware functions include the MM handle as an argument so
that the function calls will be directed to a specific MM. The first MM is assigned the handle value 0. MM handles are numbered
sequentially up to the value N-1, where N is the number of MMs in the system.

MM handles are not OS-allocated handles in the traditional sense, but rather are integer values that are assigned by the application
program. When a MM is first declared to the middleware by the application program, any valid, unused handle may be specified
for that MM. Once a handle has been assigned to a MM, it must not be used by any other MM.

3.1.2 IP Address

In addition to the MM handle, which is the logical address for a MM, each MM also has a physical address. The physical address
is the Internet Protocol (IP) address at which the MM resides. A MM’s physical address must always be specified to the
middleware in dotted decimal form (e.g., “192.168.3.35”).

3.1.2.1 Setting the MM’s IP Address

A Windows utility program, cfg2601.exe, is supplied on the distribution media. This program enables you to examine and
change a MM’s IP address. Follow these steps to program the MM’s IP address:

1. Turn off power to the target MM.
2. Attach a null modem cable from the MM’s COM4 connector to any available comport on a PC.
3. Execute the utility program by typing “CFG2601 x” where x is the comport being used on the PC. For example, type

“cfg2601 2” if COM2 is being used on the PC.
4. Wait until the program informs you that it is waiting for the 2601 to be reset.
5. Apply power to the MM.
6. Using the program’s menu system, you may examine and change the MM’s IP address.

 It is strongly recommended that you assign IP addresses that are specifically reserved for private networks, such as 10.X.X.X or
192.168.X.X, to the MMs in your system.

3.2 Thread-Safety
With few exceptions, all middleware functions are thread-safe. Applications should be designed such that the thread-unsafe
functions will not be re-entered while in use by other threads or processes. This is usually not difficult to achieve in practice as
unsafe functions are associated with middleware initialization and shutdown.

3.3 Programming Examples
The C programming language has been used to code all programming examples. In most cases the programming examples can be
easily adapted to other languages.

Many of the examples specify symbolic constants that are defined in App2600.h, which can be found on the distribution media.

Sensoray 2600 Programming Guide 4 Fundamentals of Usage

3.3.1 Data Types

Data values passed to or received from library functions belong to a small set of fundamental data types. All custom data types
employed by the API are listed in Table 1. Data types are referenced by their C-language type names, as shown in the left column
of the table.

3.4 Library Linking

3.4.1 Windows

An application that calls functions in S2600.DLL must first link to the DLL, and when terminated, an application must unlink from
the DLL so that resources used by the DLL will be released. The means by which DLL linking and unlinking is implemented
depends on your development environment.

• Visual Basic: VB applications do not require calls to S26_DLLOpen() or S26_DLLClose() because they automatically link
when any DLL function is first called, and automatically unlink when the application terminates. Instead, VB applications
must explicitly call S26_DriverOpen() and S26_DriverClose() when starting and terminating, respectively.

• C/C++: applications must call S26_DLLOpen() to link to the DLL before calling any of its functions, and S26_DLLClose()
when the application terminates. Note that these two functions are not part of the DLL; they are provided in the Win2600.c
module on the distribution media.

• Other: If you are using a development tool that does not perform automatic DLL linking, you must create functions
equivalent to S26_DLLOpen() and S26_DLLClose() as shown in the Win2600.c module on the distribution media.

3.4.2 Linux

An application that calls functions in lib2600.a must be statically linked to the library when the application is built.

For example, suppose you created a simple C-language program named app.c, which you have compiled to produce object file
app.o. In addition, you have previously located lib2600.a in your project directory. You can now execute the following
command line to link the library and produce the app executable.

gcc -g -o app app.o -L. -l2600

3.5 Required Function Calls
Some library functions are used universally in all applications, while others, depending on application requirements, may or may
not be used. All applications must, as a minimum, perform the following steps:

1. Call S26_DriverOpen() to initialize the middleware. This should always be the first middleware function executed by a
client application program. Windows only: this is called automatically if you call S26_DLLOpen().

2. For each MM, call S26_OpenBoard() to enable communication with the target MM.
3. For each MM, call S26_ResetNetwork() to initialize the target MM and verify that it is detected, fault-free and ready to

communicate. If more than one Ethernet client will be communicating with the target MM, this function should be called
only once by a designated “master” client ; all other clients should wait until the master has called this function, and then
they are free to communicate with the MM.

4. For each MM, call S26_RegisterAllIoms() to detect and register all I/O modules (IOMs) that are connected to the MM.
5. To guarantee proper cleanup upon application termination, call S26_DriverClose() once. Windows only:

S26_DriverClose() is called automatically if you call S26_DLLClose().

Table 1: Data types used by library functions

Type Name Description

u8 8-bit unsigned integer

s16/u16 16-bit signed/unsigned integer

s32/u32 32-bit signed/unsigned integer

Sensoray 2600 Programming Guide 5 Initialization and Status Functions

Chapter 4: Initialization and Status Functions

4.1 Overview
The functions described in this chapter are used to open, initialize and close the middleware library and all Main Modules in the
2600 system.

4.2 Middleware Initialization and Shutdown

4.2.1 S26_DriverOpen()

Function: Initializes the middleware.

Prototype: u32 S26_DriverOpen(u32 NumMMs);

Returns: u32 containing an error code. One of the following values is returned:

Errors can often be resolved by reconfiguring your network settings. In Windows, you can do this by changing the
TCP/IP settings through the network control panel.

Notes: This function allocates memory for and initializes the MM middleware. S26_DriverOpen() must be successfully
invoked before any other middleware functions are called. Each Ethernet client must call this function exactly
once. Multi-threaded applications must invoke this function one time before any other middleware functions are
called by any of the application’s threads.

Example: See section 4.4.4.

4.2.2 S26_DriverClose()

Function: Closes the middleware.

Prototype: void S26_DriverClose();

Returns: None.

Notes: If the prior call to S26_DriverOpen() was successful, this function must be called before the application closes to
ensure that the middleware shuts down gracefully and properly releases all resources. If an error code was returned

Parameter Type Description

NumMMs u32 Number of MMs (2601 modules) in the system.

Value Description

0 No errors were detected; middleware is open.

DRVERR_MALLOC The version number of the socket API is incompatible with the middleware, or TCP/IP is
not properly configured on the Ethernet client.

DRVERR_NETWORKOPEN There was a problem when the network interface was opened. Any of the following
conditions can cause this error:

1. The version number of the socket API is incompatible with the middleware.
2. TCP/IP is not properly configured on the Ethernet client.
3. The socket driver can’t support the number of sockets required for communicating

with the number of MMs in the system.

DRVERR_CRITICALSECTION There was a problem creating semaphores.

Sensoray 2600 Programming Guide 6 Initialization and Status Functions

by S26_DriverOpen(), however, the application should not call S26_DriverClose(). This must be the last
middleware function called by the application.

Example: See section 4.4.4.

4.2.3 S26_DriverVersion()

Function: Returns a middleware version string.

Prototype: const char * S26_DriverVersion(void);

Returns: Pointer to the middlware’s version string (e.g., “1.0.10”).

Notes: This function is only available in middleware version 1.0.10 or higher.

Example: // Fetch and display middleware version string.
printf("%s", S26_DriverVersion());

4.3 MM Initialization and Shutdown

4.3.1 S26_BoardOpen()

Function: Enables communications between an application and MM.

Prototype: u32 S26_BoardOpen(u32 hbd, char *ClientAdrs, char *MMAdrs);

Returns: u32 consisting of a set of active-high error bit flags. All flags will contain zero if the board was successfully
opened. If the board could not be opened, at least one of the flags will be asserted:

Notes: S26_BoardOpen() registers a MM with the middleware so that communication between the application program
and the MM will be enabled. Each MM must be registered before calling any other functions that reference the
MM. In the context of this function, “opening” the MM is synonymous with registering the MM.

After opening the MM, the application may use the handle in all other functions that require a board handle.

Do not register a MM at two different handles. This can result in unpredictable behavior and may cause your
system to become unstable.

Example: // Declare MM number 0, client is not multi-homed.

Parameter Type Description

hbd u32 MM handle. Use any value between 0 and N-1, where N is the number of MMs in the system.
Do not use a value that has already been used for another MM.

ClientAdrs char* Pointer to a null-terminated string that specifies the Ethernet client’s IP address in dotted
decimal format. In the case of a multi-homed client, which is a client that has two or more
network interfaces (NICs), specify the IP address of the NIC that is to be used. This should be
set to zero if the client has only one NIC; this will cause the middleware to use the default NIC
for communicating with the MM.

MMAdrs char* Pointer to a null-terminated string that specifies the MM’s IP address in dotted decimal format.
This is the address at which the MM is programmed to respond.

Symbolic Name Description

ERR_BADHANDLE An invalid MM handle was specified.

ERR_BINDSOCKET The MM’s network sockets could not be bound to the client’s IP address. Some operating
systems (e.g., Windows 98) do not support multiple NICs. In such systems, you must specify
zero as the address for your NIC.

ERR_CREATESOCKET One or more of the MM’s network sockets could not be created.

Sensoray 2600 Programming Guide 7 Initialization and Status Functions

char MMAdrs[] = "10.10.10.1";
u32 errflags = S26_BoardOpen(0, 0, MMAdrs);
if (errflags)
{
 // Handle error
}

Example: // Declare MM number 0, client is multi-homed. Note that some operating
// systems do not support more than one network card.
char ClientAdrs[] = "192.168.10.1";
char MMAdrs[] = "10.10.10.1";
u32 errflags = S26_BoardOpen(0, ClientAdrs, MMAdrs);
if (errflags)
{
 // Handle error
}

4.3.2 S26_BoardClose()

Function: Unregisters a MM with the middleware.

Prototype: void S26_BoardClose(u32 hbd);

Returns: None.

Notes: This function unregisters a MM that has been previously registered by S26_BoardOpen(). Each MM that has been
registered by S26_BoardOpen() must be unregistered when it is no longer needed by an application. All open
MMs are automatically closed by S26_DriverClose(), so it is not necessary to explicitly call S26_BoardClose()
when shutting down your application.

S26_BoardClose() severs the middleware’s communication link between the application program and the MM,
and frees the MM’s board handle. Once freed, the board handle is available for assignment to the same MM or to
any other MM.

All IOMs that have been registered for the target MM are unregistered. This can be useful if you will be
connecting IOMs to or disconnecting IOMs from the MM while the application is running.

S26_BoardClose() does not alter the state of the MM. The MM’s communication watchdog interval remains in
effect, and the gateway and comports continue any autonomous operations that are already in progress. Since all
communications will be severed between the client and the MM, the application should ensure that no gateway or
comport transactions are in progress when S26_BoardClose() is called.

Example: // Close MM number 0.
S26_BoardClose(0);

4.4 Status and Control

4.4.1 S26_ResetNetwork()

Function: Resets a MM and all connected IOMs and synchronizes communications between the client and the MM.

Prototype: u32 S26_ResetNetwork(u32 hbd);

Parameter Type Description

hbd u32 MM handle.

Parameter Type Description

hbd u32 MM handle.

Sensoray 2600 Programming Guide 8 Initialization and Status Functions

Returns: u32 value that indicates whether the reset operation was successful. Returns a non-zero value if successful, or zero
if the reset operation failed.

Notes: This function attempts to reset the specified MM and all of its connected IOMs, then it verifies that the MM has
undergone a reset by checking to see if the MM’s HRST flag is set. When the MM reset is confirmed, the HRST
flag is cleared and the function returns a non-zero value to indicate that the MM is ready to communicate with the
Ethernet client. If the MM does not respond, or it fails any part of the synchronization sequence, a zero value is
returned to indicate the problem.

S26_ResetNetwork() should be called after opening the MM and before calling any of the gateway or comport
transaction functions. In addition, this function should be called to resynchronize the client to the MM if the MM
experiences an unexpected reset operation resulting from a communication watchdog time-out.

Assuming operation on a private LAN, a delay of up to seven seconds can elapse before this function returns,
although the typical delay is much shorter. A delay of up to four seconds can occur if S26_ResetNetwork() is
called while the MM is already undergoing a reset in response to a network communication watchdog time-out.
The maximum delay will result if the MM is not reachable.

Example: See section 4.4.4.

4.4.2 S26_ResetIom()

Function: Executes an IOM module reset.

Prototype: u32 S26_ResetIom(u32 hbd, IOMPORT IomPort, u32 msec, u32 retries);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Notes: The target IOM will immediately undergo a reboot and it is unregistered with the middleware. The calling thread is
blocked while the reboot is in progress, and while communication is being established with the target module
following the module reset. If communication with the target module is successfully restored, the target module is
re-registered with the MM and the target’s RST flag is cleared.

It is strongly recommended that no other transactions be in progress for the target IOM’s MM while this call is
active. Other threads may resume transaction processing after the reset operation is finished and communication
has been restored with the target module.

Use S26_ResetNetwork() instead of S26_Sched2600_Reset() in cases where more than one module is to be
reset or the MM must be reset.

Example: // Reset the IOM connected to MM number 0, IOM port 6.
S26_ResetIom(0, 6, 1);

4.4.3 S26_RegisterAllIoms()

Function: Detects and registers all IOMs connected to a MM.

Parameter Type Description

hbd u32 MM handle.

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

msec u32 Maximum time, in milliseconds, to allow for the MM to reply.

retries u32 Maximum number of transaction retry attempts.

Sensoray 2600 Programming Guide 9 Initialization and Status Functions

Prototype: u32 S26_RegisterAllIoms(u32 hbd,u32 msec,u16 *nIoms, u16 *types, u8 *stat,u32 retries);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Notes: S26_RegisterAllIoms() attempts to detect the presence of all IOMs that are connected to the specified MM.
Each detected IOM is then queried to determine its type (i.e., model number), and its RST and CERR (but not any
IOM-specific) status flags are reset to zero. Finally, the IOM types are registered to enable type-specific I/O
operations to be scheduled and executed.

If no errors are detected, nIoms receives the number of detected IOMs, types[] receives a list of all detected IOM
types, and stat[] receives the status flags returned from all detected IOMs. nIoms will have a value from 0 to 15,
while each element of types[] will contain the IOM model number connected to the corresponding IOM port, or
zero if no IOM is present at the port. Set any of these pointer arguments to zero if the corresponding values are not
needed by the application.

This function must be called before any I/O operations are transacted with IOMs. It should be called after opening
the MM and before calling any of the gateway transaction functions. In addition, this function should be called if
the MM experiences an unexpected reset operation resulting from a communication watchdog time-out.

Example: See section 4.4.4.

4.4.4 Programming Examples

4.4.4.1 Windows

int main()
{
 u32 faults;
 char MMAdrs[] = "10.10.10.1"
 int NumIoms;
 u16 IomList[16];
 u8 IomStatus[16];

 // Open the MM middleware.
 if ((faults = S26_DLLOpen()) != 0)
 {
 //
 // Handle error
 //

 return faults;
 }

 // Open MM number 0 and process any errors.

Parameter Type Description

hbd u32 MM handle.

msec u32 Maximum time, in milliseconds, to allow for the MM to reply.

nIoms u16 * Pointer a 16-bit application buffer that will receive the number of
detected IOMs. Set to zero if the detected IOM count is not needed.

types u16 * Pointer to a 16*16-bit array that will receive a list of the detected IOM
types. types[i] will receive the model number of the IOM that is
connected to IOM port number i. Set to zero if the list of detected
IOM types is not needed.

stat u8 * Pointer to a 16-byte buffer that will receive the status bytes from all
detected IOMs. Set to zero if you are not interested in receiving IOM
status info.

retries u32 Maximum number of transaction retry attempts.

Sensoray 2600 Programming Guide 10 Initialization and Status Functions

 if ((faults = S26_BoardOpen(0, 0, MMAdrs)) != 0)
 {
 //
 // Handle error
 //

 S26_DLLClose();
 return faults;
 }

 // Reset MM number 0 and all of its connected I/O modules.
 S26_ResetNetwork(0);

 // Detect and register all IOMs connected to MM number 0.
 S26_RegisterAllIoms(0, 1000, &NumIoms, IomList, IomStatus, 1);
 printf("%d IOMs were detected.\n");

 //
 // Do all I/O operations and run the application’s main function
 //

 // Close the 2600 system middleware. S26_BoardClose() is called implicitly.
 S26_DLLClose();
 return 0;
}

4.4.4.2 Linux

int main()
{
 u32 faults;
 char MMAdrs[] = "10.10.10.1"
 int NumIoms;
 u16 IomList[16];
 u8 IomStatus[16];

 // Open the MM middleware.
 if ((faults = S26_DriverOpen()) != 0)
 {
 //
 // Handle error
 //

 return faults;
 }

 // Open MM number 0 and process any errors.
 if ((faults = S26_BoardOpen(0, 0, MMAdrs)) != 0)
 {
 //
 // Handle error
 //

 S26_DriverClose();
 return faults;
 }

 // Reset MM number 0 and all of its connected I/O modules.
 S26_ResetNetwork(0);

 // Detect and register all IOMs connected to MM number 0.
 S26_RegisterAllIoms(0, 1000, &NumIoms, IomList, IomStatus, 1);
 printf("%d IOMs were detected.\n");

Sensoray 2600 Programming Guide 11 Initialization and Status Functions

 //
 // Do all I/O operations and run the application’s main function
 //

 // Close the 2600 system middleware. S26_BoardClose() is called implicitly.
 S26_DriverClose();
 return 0;
}

Sensoray 2600 Programming Guide 12 Transactions

Chapter 5: Transactions

5.1 Overview
The majority of middleware functions are associated with gateway and comport transactions.

A comport transaction consists of sending to a MM a single Ethernet packet that contains a single comport command, and then
receiving and parsing the resulting Ethernet response packet.

A gateway transaction consists of sending to a MM a single Ethernet packet containing one or more IOM action commands, and
then receiving and parsing the resulting Ethernet response packet. Gateway transaction functions are designed to insulate the
application programmer from the cumbersome details of network programming and packet parsing when conversing with the IOM
gateway.

Aside from the programming simplifications, the gateway functions also help to optimize I/O system performance. By grouping
multiple IOM actions into a single transaction, your application will realize higher throughput and lower communication latency.
Because high throughput and low latency are hallmarks of the 2600 system, an extensive set of functions are provided for
controlling and scheduling IOM actions.

5.2 Gateway Transaction Process
Gateway transactions are implemented using a three-step process:

1. Begin a new transaction. Every transaction begins with a call to S26_SchedOpen(), which returns a handle to an empty
“transaction object.”

2. Schedule the actions. Once a transaction object has been obtained, zero or more IOM actions may be scheduled into the
transaction by means of the numerous action scheduling functions. For example, your application could call
S26_Sched2610_SetOutputs() to program the 48 digital I/Os on a model 2610 digital I/O module, and then it could call
S26_Sched2608_GetAins() to fetch the 16 digitized analog inputs from a model 2608 analog I/O module. It is important
to understand that these functions only schedule the actions for later execution; the actions are not actually executed when
the action scheduling functions are called. Note that it is not required for actions to be scheduled into a transaction; it is
permissible to simply create the transaction object without scheduling any actions into it.

3. Execute the transaction. After all desired actions have been scheduled, a call to S26_SchedExecute() causes all of the
scheduled actions to execute in a single transaction. Actions are executed in the same order they were scheduled. When
S26_SchedExecute() returns, the 48 digital I/Os will have switched to their new states, all digitized analog input data will
be stored in an application buffer and, since it is no longer needed, the transaction object is released. If no actions were
scheduled into the transaction then the transaction object is simply released; in this case, no communication with the MM
will take place.

Here is some sample code that illustrates this process. Note that error checking, which should always be performed in robust
applications, is not shown here:

u8 douts[6] = { 0x01, 0x23, 0x45, 0x67, 0x89, 0xAB }; // Desired DIO states.
double ains[16]; // Analog input values will be put here.

// Obtain a transaction object for MM number 0.
void *x = S26_SchedOpen(0, 1);

// Schedule some I/O operations into the transaction object.
S26_Sched2608_GetCalData(x, 1, 0); // Get 2608’s calibration info.
S26_Sched2608_GetAins(x, 1, ains, 0); // Get 2608’s analog input data.
S26_Sched2610_SetOutputs(x, 2, douts); // Set 2610’s digital output states.

// Execute the transaction and release the transaction object.
S26_SchedExecute(x, 1000, 0);

Sensoray 2600 Programming Guide 13 Transactions

5.2.1 Thread Safety

All of the gateway transaction functions are thread safe, and it is permissible for multiple transactions to exist (and be in different
states) at the same time. For example, your application could be partitioned into multiple threads (e.g., analog I/O thread, digital
I/O thread, serial communication thread) in which each thread asynchronously begins, schedules actions into, and executes its own
private gateway transactions. To guarantee thread safety in such a case, each transaction should be started, scheduled and executed
only by the thread that “owns” that transaction. In general, a transaction object should not be shared by multiple threads.

5.3 Transaction Buffers
Each MM has fifteen internal transaction buffers which are kept in a pool. This buffer pool is shared by all comport and gateway
transactions. A transaction buffer is dynamically allocated from the pool when a MM transaction begins (i.e., upon receipt of a
packet from an Ethernet client), and when the transaction is finished (i.e., a response packet has been sent to the client), the buffer
is returned to the pool. Every client-side transaction is associated with a dedicated transaction buffer on the MM.

A maximum of fifteen transactions—in any combination of comport and/or gateway transactions—may be in progress at the same
time on one MM. For example, it is possible for a MM to process transactions on all four of its comports while simultaneously
processing up to eleven gateway transactions. This means that a single Ethernet client may run multiple threads and/or processes
in which each thread or process concurrently executes simultaneous transactions with a single MM.

Multiple simultaneous MM transactions may involve more than one Ethernet client. For example, it is permissible for two
different Ethernet clients to simultaneously execute gateway transactions on a single MM. Each of the fifteen possible
simultaneous MM transactions may be invoked by any arbitrary Ethernet client. The MM supports up to four Ethernet clients.

An error will occur on the MM if its transaction buffer pool is empty when a transaction begins. This can happen if a packet is
received from a client while the maximum possible number of simultaneous MM transactions are already in progress. In such
cases, the newest transaction will be dropped by the MM and no response will be sent to the client.

5.4 Blocking Behavior
Gateway transactions may be managed by either blocking or non-blocking functions. All comport transaction functions are
blocking operations.

In the case of a gateway transaction, execution of the calling thread is blocked by S26_SchedExecute() until a response packet is
received from the target MM. This works well if your application has one or more dedicated gateway transaction threads because
other threads can run while the transacting threads are blocked. There may be situations, however, in which it is impractical to
employ separate transaction threads. To support these cases, several middleware functions have been provided to enable
non-blocking gateway transactions.

To execute a non-blocking gateway transaction, call S26_SchedExecuteStart() instead of S26_SchedExecute(). This will
initiate the transaction (i.e., send the Ethernet command packet to the MM) but will return immediately without waiting for a
response packet.

At any convenient time after calling S26_SchedExecuteStart(), you may call S26_SchedExecuteIsResponded() to determine
whether a response packet has arrived. If no response has arrived, the application may continue on with other tasks, calling
S26_SchedExecuteIsResponded() again at any later times as needed. If and when all other tasks have been completed, the
application can call S26_SchedExecuteWait() to block until a response packet has arrived.

When the application determines that a response packet has been received, it should call S26_SchedExecuteFinish() to process
the response packet and release the transaction object’s resources.

5.5 Errors
With the exception of S26_SchedOpen(), all gateway and comport transaction functions return an enumerated error code. These
error codes are referenced by their symbolic names as defined in app2601.h. Error codes occupy the most significant three bytes
of a u32 value. Some error types return extended information in the error code’s least significant byte.

Sensoray 2600 Programming Guide 14 Transactions

Transaction error codes have the following meanings:

In the above table, the “Com” column indicates whether the error type is applicable to comport transactions. Note that all of the
error types are applicable to gateway transactions.

Symbolic Name Com Description Error Code LSB

GWERR_BADVALUE Yes An illegal argument value was specified. For example:

* MM handle is greater than or equal to the number of declared MM’s.
* IOM port number is outside the range 0 to 15, or 0xFF for the gateway.
* A channel number does not exist on the target IOM.
* A numerical value exceeds permitted limits.

Illegal value’s position
in the function
argument list.

GWERR_IOMCLOSED No An attempt was made to schedule an IOM action for an IOM that is not
open. This can happen if the application attempts to communicate with
an IOM that has not been registered by S26_RegisterAllIoms().

Iom port number of the
closed module.

GWERR_IOMERROR No One or more IOM communication error flags (CERR) are asserted. See
the IomStatus[] array, which is populated by
S26_SchedExecute(), for details.

Iom port number of the
module for which
CERR is first detected.

GWERR_IOMNORESPOND No Error(s) were detected in an MRsp within the gateway response packet.
The application should assume that all of the associated IOM’s scheduled
actions, as well as all later actions that were scheduled for this and any
other IOMs, failed to execute properly. This error can happen if:

* MRsp module identifier field does not contain the expected value, or
* MRsp payload length differs from that specified by the length field, or
* MRsp length field does not match the expected value.

Iom port number
associated with the
MRsp.

GWERR_IOMRESET Yes The reset flag (RST) is asserted on the MM or one or more IOMs. If the
port number indicates an IOM (i.e., port number is in the range 0x00 to
0x0F) then you may analyze the contents of the IomStatus[] array,
which is populated by S26_SchedExecute(), for details. If the port
number is 0xFF then the RST flag is asserted on the MM.

Iom port number of the
module for which RST
is first detected.

GWERR_IOMSPECIFIC No One or more IOM-specific status flags are asserted. See the
IomStatus[] array, which is populated by S26_SchedExecute(),
for details.

Iom port number of the
module for which this
is first detected.

GWERR_IOMTYPE No An attempt was made to schedule an IOM action that is not supported by
the registered IOM type (e.g., scheduling a digital I/O action for an
analog I/O module).

Iom port number
associated with the
scheduling error.

GWERR_MMCLOSED Yes An attempt was made to communicate with a MM that is not open. The
application must first call S26_BoardOpen() to open the MM for
communication.

0

GWERR_MMNORESPOND Yes The MM failed to respond, causing the client to time-out the transaction.
See section 5.5 for a discussion of transaction time-outs.

0

GWERR_PACKETSEND Yes The socket driver failed to transmit the gateway command packet. 0

GWERR_TOOLARGE Yes This can happen in two situations:

* The command packet’s size or the expected response packet’s size
exceeds the maximum UDP payload size supported by the MM (1KB).

* Too many MCmds are present in the gateway command packet. The
middleware permits a maximum of 100 MCmds per command packet.

If this error is raised, try redistributing the transaction’s actions among
multiple transactions.

0

GWERR_XACTALLOC Yes Allocation failure. GWERR_XACTALLOC will be asserted by any gateway
transaction function that requires a transaction object in its argument list,
but is instead passed a null (zero value) transaction object. This can
happen if more than eight comport and/or gateway transactions exist at
the same time. See section 5.3 for more information.

0

Sensoray 2600 Programming Guide 15 Transactions

5.5.1 Gateway Error Propagation

When any gateway transaction error has been detected, construction of the transaction’s command packet is terminated and all
subsequent gateway transaction functions will fail and return the last error value. Because of this “error propagation” behavior, it
is usually unnecessary to check for transaction errors after each gateway transaction function is called. Instead, all transaction
errors can be caught when S26_SchedExecute() returns.

Error propagation is extended to include S26_SchedOpen(), which returns zero if it fails to create a new transaction object.
Instead of checking for errors after calling S26_SchedOpen(), the application is permitted to schedule actions into the “void
transaction” and then execute the transaction as if it had been successfully created. At any point during action scheduling into or
upon execution of a void transaction, all scheduling and execution functions will return GWERR_XACTALLOC to indicate the
transaction was not successfully created. For obvious reasons, no physical transaction will occur and no actions will be invoked.

5.5.2 Scope of Errors

Each transaction keeps track of its own errors. When a transaction error is detected, it is known only to the transaction in which it
occurs. Transactions are not aware of errors that have occurred in other transactions. Transaction errors are “cleared”
automatically when S26_SchedExecute() returns, because the associated transaction object is released. The underlying cause of
a transaction error, however, may still be pending after the transaction is finished. For example, an IOM’s reset flag will remain
asserted until explicitly reset by the client, even though the resulting GWERR_IOMRESET transaction error “disappears” when the
transaction is finished.

5.5.3 Error Handling

In the cases of both comport and gateway transaction errors, the application’s error handler should first determine if any errors
were detected; this can be quickly done by testing the error code for a zero value. If the value is not zero then the indicated error
must be processed by the error handler.

It is permissible to process the error code with a “switch” statement because the error codes are enumerated values. If a switch
statement is employed, however, the least significant byte of the error code must first be masked because it may contain additional
information about the error. Refer to the sample applications for examples of error handling.

Important: For each successful call to S26_SchedOpen() there must be a corresponding call to S26_SchedExecute(), even if
gateway errors are detected before S26_SchedExecute() is called. This ensures that resources allocated by S26_SchedOpen()
will be released, thereby preventing memory leaks and other potential problems.

5.6 Time-outs
Some of the gateway transaction functions and all of the comport transaction functions include a “msec” argument that specifies
the maximum number of milliseconds to wait for the MM to respond before declaring a time-out error (i.e., GWERR_MMNORESPOND).
When calling these functions, the application must specify an appropriate milliseconds value. The choice of the milliseconds value
depends on several factors:

• Network traffic. High network traffic, caused by activities such as video multicasting, can interfere with the timely delivery of
packets to and from the MM. To prevent this, it is best to dedicate a private LAN for the 2600 I/O system.

• Router hops. Routers can lead to unpredictable latencies, especially when the other networks through which 2600 packets
flow have widely varying network traffic. A good policy is to eliminate routers from the 2600 communication path. If a 2600
client requires the services of a router, it is best to install two network interfaces in the client: one for the private 2600 network
and the other for the external network.

• CPU loading. A heavily loaded client-side CPU may introduce communication latency if it becomes compute-bound. The
solution to this problem is to reduce CPU loading or employ a faster CPU.

• Process priorities. Other network-related processes may “trump” the 2600 middleware’s network access requests if process
priorities are not set appropriately. The process that communicates with the 2600 system is usually classified as a “real-time”
process, and as such it should have relatively high priority. Note: high priority does not always guarantee real-time behavior,
especially with non real-time operating systems such as Windows.

• MM response time. Typically, only one transaction is in progress for a particular comport at any given time. As a result,
comport transaction times depend mostly on packet sizes and are therefore relatively predictable. Gateway transactions, on the
other hand, are less predictable. This is because a gateway transaction time depends not only on its command and response

Sensoray 2600 Programming Guide 16 Transactions

packet sizes, but also on how many other gateway transactions are already in progress. “Simultaneous” gateway transactions
are queued by the MM and executed in the order in which their command packets are received at the MM.

A msec value should be chosen that is at least as long as the worst-case transaction time after allowing for all of the above factors.
On the other hand, the value should be sufficiently short to ensure timely detection of a gateway transaction failure. The
programming examples in this manual use a somewhat arbitrary value of 1000 milliseconds. In most cases, this is far more than
enough time for a typical private LAN that imposes no routers between the client and the MM, yet it ensures that a transaction
time-out will be detected within one second.

In addition to communication latencies, transaction time-outs can also be caused by dropped packets or situations in which
multiple Ethernet clients are attempting to run too many simultaneous transactions.

5.7 Retries
A transaction retry is performed by re-sending a transaction’s command packet and waiting for its response packet to arrive, or a
response timeout, whichever comes first. If the MM did not previously receive the command packet, it will execute the commands,
and both cache and transmit the response packet. If the MM recognizes the command packet as being a duplicate of a previously
executed command packet, it will drop the packet (i.e., not execute the commands) and instead send the corresponding response
packet that was previously sent and cached. This retry mechanism relieves the client application of the responsibility for
communication error correction, and makes possible recovery from certain types of errors that would otherwise be unrecoverable
(e.g., reading data from a comport).

All gateway and comport transactions include a retries value that is specified in one of the middleware function calls associated
with the transaction.

When retries is set to a positive number, the middleware will automatically retry the transaction if it doesn’t receive a reply from
the MM within the transaction’s specified time-out interval. Transaction retries will repeat until a reply is received from the MM
or the specified number of retries have been attempted. If the maximum number of allowed retries have been attempted and there
is still no response from the MM, the transaction will fail with GWERR_MMNORESPOND returned.

Retries are disabled when retries is set to zero. In this case, the transaction will fail with GWERR_MMNORESPOND upon the first
MM response time-out.

The worst-case transaction time equals the time-out interval times retries. This is the total elapsed time the application will wait
for a transaction to complete in the event of a MM communication failure.

A retries value should be chosen based on your network error rate, which in turn depends on whether collisions are possible
(e.g., your installation uses hubs instead of switches), cable lengths, electrical noise, and other factors. The programming examples
in this manual use a value of 1, which is sufficient for most private LAN environments.

Sensoray 2600 Programming Guide 17 Gateway Transaction Control

Chapter 6: Gateway Transaction Control

6.1 Overview
The functions in this section are used to initialize and execute gateway transactions.

6.2 Transaction Control Functions

6.2.1 S26_SchedOpen()

Function: Begins a new gateway transaction.

Prototype: void *S26_SchedOpen(u32 hbd, u32 retries);

Returns: Handle to a new gateway transaction, or zero if the transaction could not be created.

Notes: S26_SchedOpen() starts the construction of a new gateway transaction. The new transaction will be empty (i.e., it
will have no scheduled IOM actions). After successfully calling this function, IOM actions can be scheduled into
the transaction, and when all desired actions have been scheduled, the transaction may be executed.

Except for GWERR_MMCLOSED, all transaction errors are negated in the new transaction. The GWERR_MMCLOSED error
will be asserted if the target MM is closed when the transaction is created. If the MM is open, GWERR_MMCLOSED
will be negated and it will be possible to schedule actions into and execute the transaction.

Important: To prevent resource leaks and other potential problems, S26_SchedExecute() or
S26_SchedExecuteFinish() must be called for each transaction that is successfully started by
S26_SchedOpen(). This must be done even if gateway errors were generated while scheduling IOM actions into
the transaction and the errors are detected before the transaction is executed. There is no need, however, to call
either S26_SchedExecute() or S26_SchedExecuteFinish() if S26_SchedOpen() fails to create a new
transaction, although there is no harm in doing so.

Example: See the example in section 6.2.2.

6.2.2 S26_SchedExecute()

Function: Executes a transaction.

Prototype: u32 S26_SchedExecute(XACT x, u32 msec, u8 *IomStatus);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Notes: S26_SchedExecute() sends the transaction’s gateway command packet to the MM and waits for the MM to reply
with a gateway response packet. The calling thread is blocked until either a response packet is received or the

Parameter Type Description

hbd u32 MM handle.

retries u32 Maximum number of transaction retry attempts.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

msec u32 Maximum time to wait for the gateway response packet, in milliseconds, before
declaring a time-out.

IomStatus u8 * Pointer to a 16-byte buffer that will receive the status bytes from all IOMs. Set to zero
if you are not interested in receiving IOM status info.

Sensoray 2600 Programming Guide 18 Gateway Transaction Control

time-out interval has elapsed, whichever occurs first. When it is received, the response packet is checked for errors
and, if no errors are detected, all of the embedded IOM responses are extracted from the response packet and
copied to their target application buffers.

This function is the equivalent of calling, in sequence, S26_SchedExecuteStart(), S26_SchedExecuteWait()
and S26_SchedExecuteFinish().

Important: The specified transaction object will no longer exist and the transaction handle will no longer be valid
when this function returns. After calling this function, do not attempt to use the transaction handle again in calls to
action scheduling functions.

If IomStatus is non-zero (i.e., it points to a 16-byte application buffer), this buffer will be populated with the status
bytes received from all 16 IOMs. One status byte is populated for each IOM; for example, IomStatus[14]
contains the status byte for the IOM that is connected to the MM’s IOM port number 14. A status byte will be set
to zero in cases where no IOM is connected to the port or no actions have been scheduled for the IOM.

Multiple status bytes will be received from an IOM if two or more module commands (MCmds) are addressed to
the same IOM within a single transaction. This can happen for various reasons:

q Two actions scheduled for an IOM are separated by an action that is scheduled for a different IOM. In this
case the new MCmd is implicitly forced by the application program, because a new MCmd is required
whenever an action is scheduled for an IOM that differs from the previous action’s IOM.

q A new MCmd is automatically forced by an action that would have overflowed the IOM’s response buffer.
This causes the IOM response buffer to be flushed before the new action response is generated.

q A new MCmd is automatically forced by an action that would have exceeded the maximum legal MCmd
size.

q A new MCmd is automatically forced if status bits that are masked off in the current MCmd are regarded as
relevant by a scheduled action. For example, S26_Sched2600_ClearStatus() may mask the RST status bit
so that it will not generate an error, but most other actions, such as S26_Sched2600_IomGetProductID(),
treat the RST bit as relevant. Consequently, a new MCmd will be automatically started between sequential
calls to S26_Sched2600_ClearStatus() and S26_Sched2600_IomGetProductID().

The status byte that is written to IomStatus[] for each IOM is formed by logically or’ing together the status
bytes, after masking non-relevant bits, that are received from each of the IOM’s MCmds. As a result, each of the
application’s IOM status bytes is the consolidation of all relevant status information from all actions with the
associated IOM.

Example: // Execute some I/O operations on MM number 0, and its connected IOMs.

u8 status[16]; // All IOM status bytes will be put here.
u32 gwerr; // Transaction error code will be put here.

// Create a new transaction for MM number 0.
void *x = S26_SchedOpen(0, 1);

//
// ToDo: Schedule the desired I/O operations into the transaction ...
//

// Execute the transaction. Report if errors were encountered.
if ((gwerr = S26_SchedExecute(x, 1000, status)) != 0)
 printf("Transaction error: %d\n", gwerr);

6.2.3 S26_SchedExecuteStart()

Function: Starts a transaction execution.

Sensoray 2600 Programming Guide 19 Gateway Transaction Control

Prototype: u32 S26_SchedExecuteStart(XACT x);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Notes: S26_SchedExecuteStart() sends the transaction’s gateway command packet to the MM and then returns
immediately. It can be called in place of S26_SchedExecute() by threads that must not block while transactions
are in progress.

After calling this function, S26_SchedExecuteIsResponded() can be called in a non-blocking polling loop to
determine when the gateway response packet has been received and is ready for processing. Alternately,
S26_SchedExecuteWait() can be called to block the calling thread until the response packet is received. When the
response packet has been received, S26_SchedExecuteFinish() can be called to complete the transaction.

Example: See section 6.2.6.

6.2.4 S26_SchedExecuteIsResponded()

Function: Determines whether a gateway response packet has been received.

Prototype: u32 S26_SchedExecuteIsResponded(XACT x);

Returns: True (1) if a packet has been received, or false (0) if no packet has been received.

Notes: This function indicates the availability of a received gateway response packet for the specified transaction. It can
be called by threads that must not block while transactions are in progress. The specified transaction should
already be executing as a result of a prior call to S26_SchedExecuteStart().

Example: See section 6.2.6.

6.2.5 S26_SchedExecuteWait()

Function: Waits for a gateway response packet to be received.

Prototype: u32 S26_SchedExecuteWait(XACT x, u32 msec);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Notes: This function waits for a received gateway response packet or a time-out, whichever occurs first. The calling
thread will block until a packet is received or the receive times out. The specified transaction should already be
executing as a result of a prior call to S26_SchedExecuteStart().

Example: See section 6.2.6.

6.2.6 S26_SchedExecuteFinish()

Function: Processes a received gateway response packet.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

msec u32 Maximum time to wait for the gateway response packet, in milliseconds, before
declaring a time-out.

Sensoray 2600 Programming Guide 20 Gateway Transaction Control

Prototype: u32 S26_SchedExecuteFinish(XACT x, u8 *IomStatus);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Notes: This function assumes that a gateway response packet has already been received for the specified transaction. An
error code will be returned if a received packet is not available for processing. The response packet is checked for
errors and, if no errors are detected, all of the embedded IOM responses are extracted from the response packet and
copied to their target application buffers.

The specified transaction object will no longer exist and the transaction handle will no longer be valid when this
function returns. After calling this function, do not attempt to use the transaction handle again in calls to action
scheduling functions.

Example: // Do some I/O operations on MM number 0 and its connected IOMs in a non-blocking way.

u8 status[16]; // All IOM status bytes will be put here.
u32 gwerr; // Transaction error code will be put here.

// Create a new transaction for MM number 0.
void *x = S26_SchedOpen(0, 1);

//
// ToDo: Schedule the desired I/O operations into the transaction ...
//

// Start the transaction executing.
S26_SchedExecuteStart(x);

// Do some other things while the transaction executes.
while (!S26_SchedExecuteIsResponded(x))
{
 //
 // ToDo: Do some other things ...
 //

 if (no_more_things_to_do)
 {
 // Wait for transaction response packet, then exit the loop.
 S26_SchedExecuteWait(x, 1000)
 break;
 }
}

// Process the transaction response packet. Report if errors were encountered.
if ((gwerr = S26_SchedExecuteFinish(x, status)) != 0)
 printf("Transaction error: %d\n", gwerr);

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomStatus u8 * Pointer to a 16-byte buffer that will receive the status bytes from all IOMs. Set to zero
if you are not interested in receiving IOM status info.

Sensoray 2600 Programming Guide 21 Gateway Action Scheduling

Chapter 7: Gateway Action Scheduling

7.1 Overview
This chapter details all of the functions that are used to schedule I/O actions on IOMs and the gateway. Except where noted, all of
these functions assume that a gateway transaction has been previously opened and is ready to schedule IOM actions.

7.1.1 Performance Benchmarks

Timing benchmarks are specified in all of the scheduling function descriptions. These benchmark times are nominal values that
may be used to estimate gateway transaction times. Benchmarks are conservatively rated and, as a result, applications will tend to
exhibit better performance than indicated by the benchmarks.

Each published benchmark specifies the time required for execution of a specific I/O action. The total gateway transaction time
may be estimated by summing the action execution benchmark times, and then adding overhead for protocol stack transit, packet
time on the wire, etc. Since the overhead time is influenced by elements that are not under control of the middleware, the latencies
associated with these overhead items are not specified in this document.

Important: Benchmark times are conservatively rated, but they are not worst-case values.

7.1.2 Returned IOM Status

A status byte, consisting of a set of bit flags, is returned by an IOM when it executes a scheduled IOM action. Two of the bit flags,
STATUS_RST and STATUS_CERR, are common to all IOM types. If these flags are asserted by any IOM, a transaction error of type
GWERR_IOMRESET or GWERR_IOMERROR, respectively, will be generated.

In addition to the common bit flags, some IOM types support type-specific bit flags. These special flags are described in the
“Type-Specific Errors” subsection near the beginning of each IOM reference section. If any of the type-specific bit flags are
asserted by any IOM, a transaction error of type GWERR_IOMSPECIFIC will be generated.

7.1.3 Argument Lifetime

Most scheduling functions have arguments that specify data that is to be exchanged with a target module. Examples of this
include the value to be written to an analog output channel (outgoing data), or a pointer to a buffer that will receive analog input
data (incoming data). Each such argument has a life expectancy that depends on whether the associated data is outgoing or
incoming.

7.1.3.1 Outgoing Data

All scheduling functions copy outgoing data to private internal storage before returning. Consequently, outgoing data is no longer
needed and thus may be permitted to change value or go out of scope after the scheduling function returns. For example, this code
is legal because states is copied by the scheduling function:

// Program solid state relay control outputs on a model 2652 IOM.
u8 states = 0x55; // Desired SSR output states.
void *x = S26_SchedOpen(0, 1); // Obtain a transaction object.
S26_Sched2652_SetOutputs(x, 9, &states); // Schedule the action.
states = 0xAA; // IT’S OK TO CHANGE THE VALUE NOW !!!
S26_SchedExecute(x, 1000, 0); // Execute the transaction.

7.1.3.2 Incoming Data

The scheduling functions handle incoming data by scheduling a callback for each incoming data argument. All scheduled
callbacks will execute when the associated transaction executes. Accordingly, buffers that will receive incoming data must remain
in scope until the transaction is completed. This code example illustrates a violation of this requirement:

// Fetch solid state relay inputs from a model 2652 IOM.
void ScheduleReadSSR(void *x)
{

Sensoray 2600 Programming Guide 22 Gateway Action Scheduling

 u8 states; // Buffer that will receive SSR states.
 S26_Sched2652_GetInputs(x, 9, &states); // Schedule the action.
}

void *x = S26_SchedOpen(0, 1); // Obtain a transaction object.
ScheduleReadSSR(x); // states NO LONGER EXISTS UPON RETURN !!!
S26_SchedExecute(x, 1000, 0); // Execute the transaction. ERROR!

In the above example, states has been designated as the buffer that will receive incoming data. Unfortunately, states will cease
to exist when SchedultReadSSR() returns, resulting in an error when the transaction executes.

7.2 Common IOM Actions
The functions in this section are used to schedule common IOM actions that apply to all IOM types, and in most cases, to the
gateway as well. Note that these functions only schedule actions into a transaction; they do not cause the actions to be immediately
executed. Usage of these functions is not dependent on the target IOM being any particular type, nor is it necessary for the IOM
type to be registered for the referenced IOM port.

7.2.1 Type-Specific Errors

In addition to the common bit flags (STATUS_RST and STATUS_CERR), some IOM types have type-specific bit flags. These special
flags may be asserted upon execution of any of the actions listed in this section. If any of these flags are asserted by any IOM, a
transaction error of type GWERR_IOMSPECIFIC will be generated.

7.2.2 S26_Sched2600_ClearStatus()

Function: Schedules the resetting of one or more status bits for an IOM or the gateway.

Prototype: u32 S26_Sched2600_ClearStatus(XACT x, IOMPORT IomPort, u8 BitMask);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.8 ms for IOMs, or 0.1 ms for the gateway.

Notes: This function schedules a ResetFlags action, which will reset to zero the specified bit flags in the target IOM’s
status byte. Refer to the ResetFlags action in the Model 2600 Family Instruction Manual for more information.

Example: // Clear the RST flag on the IOM connected to MM number 0, IOM port 6.
void *x = S26_SchedOpen(0, 1);
S26_Sched2600_ClearStatus(x, 6, STATUS_RST);
S26_SchedExecute(x, 1000, 0);

7.2.3 S26_Sched2600_GetAddress()

Function: Schedules the fetching of an IOM’s address shunt settings.

Prototype: u32 S26_Sched2600_GetAddress(XACT x, IOMPORT IomPort, u8 *adrs);

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected, or 0xFF if
the gateway is the target.

BitMask u8 Specifies the status bits that are to be reset to zero.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

adrs u8 * Pointer to a 1-byte application buffer that is to receive the address.

Sensoray 2600 Programming Guide 23 Gateway Action Scheduling

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.8 ms.

Notes: Some IOM types have provision for installing address shunts. These shunts enable the system integrator to specify
an address for the module, with a value in the range 0 to 15 decimal. This function can be used to read the address
shunts from IOMs that include this hardware feature.

Example: // Fetch the address shunt settings from MM number 0, IOM port 6.
u8 shunts;
void *x = S26_SchedOpen(0, 1);
S26_Sched2600_GetAddress(x, 6, &shunts);
S26_SchedExecute(x, 1000, 0);
printf("Shunts = %d\n", shunts);

7.2.4 S26_Sched2600_GetFirmwareVersion()

Function: Schedules the fetching of the firmware version number from an IOM or the gateway.

Prototype: u32 S26_Sched2600_GetFirmwareVersion(XACT x, IOMPORT IomPort, u16 *Version);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.9 ms for IOMs, or 0.1 ms for the gateway.

Example: // Fetch the IOM firmware version number from MM number 0, IOM port 6.
u8 vers[2];
void *x = S26_SchedOpen(0, 1);
S26_Sched2600_GetFirmwareVersion(x, 6, &vers);
S26_SchedExecute(x, 1000, 0);
printf("IOM version number = %d.%d\n", vers[0], vers[1]);

Example: // Fetch the firmware version number from MM number 0.
u8 vers[2];
void *x = S26_SchedOpen(0, 1);
S26_Sched2600_GetFirmwareVersion(x, MODID_GATEWAY, &vers);
S26_SchedExecute(x, 1000, 0);
printf("MM version number = %d.%d\n", vers[0], vers[1]);

7.2.5 S26_Sched2600_IomGetProductID()

Function: Schedules the fetching of the model number from an IOM or the gateway.

Prototype: u32 S26_Sched2600_IomGetProductID(XACT x, IOMPORT IomPort, u16 *ProductID);

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected, or 0xFF if
the gateway is the target.

Version u16 * Pointer to a 16-bit application buffer that will receive the target IOM’s version number
as two decimal values. The first byte is the major version number. The second byte is
the minor version number.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected, or 0xFF if
the gateway is the target.

ProductID u16 * Pointer to a 16-bit application buffer that is to receive the product identifier. The
product identifier is always expressed as a decimal value.

Sensoray 2600 Programming Guide 24 Gateway Action Scheduling

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.9 ms for IOMs, or 0.1 ms for the gateway.

Notes: The returned value indicates the model number of the target module. For example, the decimal value 2652 is
returned by the Model 2652 Solid State Relay IOM. The value 2601 is returned when the gateway is the target
module.

Example: // Fetch the IOM model number from MM number 0, IOM port 6.
u16 modelnum;
void *x = S26_SchedOpen(0, 1);
S26_Sched2600_IomGetProductID(x, 6, &modelnum);
S26_SchedExecute(x, 1000, 0);
printf("Model number = %d\n", modelnum);

7.2.6 S26_Sched2600_Nop()

Function: Schedules a “no-operation” action for an IOM or the gateway.

Prototype: u32 S26_Sched2600_Nop(XACT x, IOMPORT IomPort);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.7 ms for IOMs, or 0.1 ms for the gateway.

Notes: S26_Sched2600_Nop() may be used to acquire IOM status when no other actions are required.

Example: // Fetch IOM status from MM number 0, IOM port 6.
u8 status[16];
void *x = S26_SchedOpen(0, 1);
S26_Sched2600_Nop(x, 6);
S26_SchedExecute(x, 1000, status);
printf("IOM_6 status = %d\n", status[6]);

7.3 Model 2601 Gateway
The functions in this section are used to schedule gateway actions on a MM. These functions are applicable only to Model 2601
MMs. Any attempt to call these functions for IOMs will result in a GWERR_IOMTYPE transaction error. Note that these functions
only schedule actions into a transaction; they do not cause the actions to be immediately executed

7.3.1 Type-Specific Errors

The gateway employs only the STATUS_RST flag. It does not have a STATUS_CERR flag, nor does it have any type-specific flags. If
the gateway’s STATUS_RST flag is asserted, a transaction error of type GWERR_IOMRESET will be generated and the error code’s
least significant byte (which indicates the module in which the error was detected) will contain MODID_GATEWAY.

7.3.2 S26_Sched2601_GetInterlocks()

Function: Schedules the fetching of the MM’s power interlock status.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected, or 0xFF if
the gateway is the target.

Sensoray 2600 Programming Guide 25 Gateway Action Scheduling

Prototype: u32 S26_Sched2601_GetInterlocks(XACT x, u8 *LockFlags);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.1 ms.

Notes: The MM includes two connectors for interlock power distribution. One connector receives power from up to six
interlock contacts, while the other connector serves as a daisy-chain to distribute the interlock power to IOMs.
Each interlock signal is called an interlock channel.

Every interlock channel occupies one circuit in each of the MM’s interlock power connectors. In addition, each
channel is routed to a metering circuit that enables the MM to monitor the channel’s voltage level. If a channel’s
interlock contact is closed, the interlock will supply voltage to the input connector, which in turn will convey the
voltage to the output connector and metering circuit.

Example: // Fetch the interlock status from MM number 0.
u8 flags;
u8 mask;
int i;
void *x = S26_SchedOpen(0, 1);
S26_Sched2601_GetInterlocks(x, &flags);
S26_SchedExecute(x, 1000, 0);
for (i = 0, mask = 1; i < 6; i++, mask <<= 1)
 printf("Power %d is %s\n", i, ((flags & mask) ? "on" : "off");

7.3.3 S26_Sched2601_GetLinkStatus()

Function: Schedules the fetching of the status of the gateway’s sixteen IOM ports.

Prototype: u32 S26_Sched2601_GetLinkStatus(XACT x, u16 *LinkFlags);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.1 ms.

Notes: The gateway automatically maintains a list of active IOM ports, called the Active Port List (APL). This function
returns a snapshot of the APL to the client.

Example: // Fetch the link status from MM number 0.
u16 flags;
u16 mask;
int i;
void *x = S26_SchedOpen(0, 1);
S26_Sched2601_GetLinkStatus(x, &flags);
S26_SchedExecute(x, 1000, 0);
for (i = 0, mask = 1; i < 16; i++, mask <<= 1)

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

LockFlags u8 * Pointer to a 1-byte application buffer that is to receive the interlock power state flags.
Each bit is associated with an interlock channel number. For example, bit 4 is
associated with interlock channel 4. A bit flag is set to one to indicate that the
interlock input has applied power, or zero to indicate that the interlock input has no
applied power.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

LinkFlags u16 * Pointer to a 16-bit application buffer that is to receive the link status flags. Each bit is
associated with a single port. For example, bit 4 is associated with port 4. A bit flag is
set to one to indicate active link (IOM connected), or zero to indicate inactive link.

Sensoray 2600 Programming Guide 26 Gateway Action Scheduling

{
 if (flags & mask)
 printf("Module detected at IOM port %d\n", i);
}

7.3.4 S26_Sched2601_SetWatchdog()

Function: Schedules the programming of the gateway’s communication watchdog interval.

Prototype: u32 S26_Sched2601_SetWatchdog(XACT x, u8 NumTenthSeconds);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.1 ms.

Notes: The MM employs a timer to detect the absence of communications between the Ethernet client and the gateway. If
no communications are received from the client within the specified time-out interval, the communication timer
will time-out and the MM will execute a hardware reset. This behavior ensures that all I/O will be turned off in the
event the client shuts down abnormally.

The watchdog interval defaults to 10 seconds (NumTenthSeconds = 100) in response to a MM reset. If the default
interval is suitable for the application, no SetWatchdog action need be issued to the MM.
Upon receipt of a SetWatchdog action, the new watchdog interval is effective immediately and the watchdog
timer is reset so that it will time out when the new interval elapses.

Example: // Set the communication watchdog interval on MM number 0 to 3.5 seconds.
void *x = S26_SchedOpen(0, 1);
S26_Sched2601_SetWatchdog(x, 35);
S26_SchedExecute(x, 1000, 0);

7.4 Model 2608 Analog IOM
The functions in this section are used to schedule IOM actions for Model 2608 Analog IOMs. These functions are applicable only
to Model 2608 IOMs. Any attempt to call these functions for other IOM types will result in a GWERR_IOMTYPE transaction error.
Note that these functions only schedule IOM actions into a transaction; they do not cause the actions to be immediately executed.

7.4.1 Type-Specific Errors

In addition to the common IOM status bit flags (STATUS_RST and STATUS_CERR), this IOM type supports the following
type-specific flag. If this flag is asserted, a transaction error of type GWERR_IOMSPECIFIC will be generated:

7.4.2 Analog Input Types

Several analog input types are supported by the middleware. Depending on the input type declared for an analog input channel, the
middleware will automatically configure the channel’s gain as required. For example, declaring any of thermocouple input types

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

NumTenthSeconds u8 MM communication watchdog interval, expressed in 100 millisecond
increments. For example, the value 25 specifies a 2.5 second watchdog
interval. Specify zero to disable the communication watchdog.

Symbolic Name Description

STATUS_2608_CALERR A problem was encountered when this IOM was initialized and, as a result, the calibration values stored in
the module’s EEPROM are not being used. Instead, default values are being used which may affect the
accuracy of analog inputs and outputs. This can be caused by any of the following:

* A communication fault occurred when fetching values from the IOM’s EEPROM.
* The EEPROM checksum is invalid.
* One or more calibration values stored in the EEPROM exceed tolerance limits.

Sensoray 2600 Programming Guide 27 Gateway Action Scheduling

will cause the corresponding channel to be programmed for the 100 millivolt measurement range. The following table shows the
relevant attributes for all supported input types. The enumerated input type names are defined in the App2600.h header file.

7.4.3 Calibration

Calibration is achieved by storing values in the 2608 module’s EEPROM. Values may be stored in the EEPROM by calling
S26_2608_WriteEeprom(), and stored values may be retrieved by calling S26_Sched2608_ReadEeprom().

Various EEPROM locations are reserved for calibration values as described in section 7.4.4. All calibration values are multi-byte
values that are stored in little-endian byte order.

7.4.4 Reserved EEPROM Locations

As shown in the following table, the first 176 EEPROM locations are reserved for calibration and configuration data:

7.4.5 S26_Sched2608_SetTempUnits()

Function: Schedules the setting of temperature units for thermocouple data returned from a model 2608 IOM.

Enumerated Type Resolution Data Units Description

RAW_LG_TYPE 1 count ADC counts Corrected ADC counts, 10V range. This is the default type.

RAW_HG_TYPE 1 count ADC counts Corrected ADC counts, 100mV range.

V_10_TYPE 320 µV Volts Measured voltage, 10V range.

V_001_TYPE 3.2 µV Volts Measured voltage, 100mV range.

TC_B_TYPE 0.457 °C @ 800 °C °C or °F B thermocouple.

TC_C_TYPE 0.168 °C @ 800 °C °C or °F C thermocouple.

TC_E_TYPE 0.0478 °C @ 100 °C °C or °F E thermocouple.

TC_J_TYPE 0.0593 °C @ 100 °C °C or °F J thermocouple.

TC_K_TYPE 0.0762 °C @ 100 °C °C or °F K thermocouple.

TC_N_TYPE 0.107 °C @ 100 °C °C or °F N thermocouple.

TC_R_TYPE 0.267 °C @ 800 °C °C or °F R thermocouple.

TC_S_TYPE 0.291 °C @ 800 °C °C or °F S thermocouple.

TC_T_TYPE 0.0696 °C @ 100 °C °C or °F T thermocouple.

Address Data Type Description

0 u8 Number of analog output channels present on the 2608 module. This is factory programmed and
should never be changed.

1 to 11 -- Reserved for future use.

12 u32 Exact voltage of 10V reference standard, times 1e6.

16 u32 Exact voltage of 100mV reference standard, times 1e6.

20+6*CHAN s16 Raw binary value that would be programmed onto analog output channel CHAN in order to produce
exactly zero volts out. This typically has a value between -15 and +15.

22+6*CHAN u32 Scalar, times 1e6, that is applied to values programmed onto analog output channel CHAN to
compensate DAC full scale error. The scalar value is typically within ±5% of 1.0.

68+2*CHAN s16 Raw binary value that must be subtracted from on-board reference temperature sensor CHAN to
compensate its offset temperature.

84 u8 Checksum of all stored bytes from address 0 through 83.

85 to 175 -- Reserved for future use.

176 to 255 -- Available for application use.

Sensoray 2600 Programming Guide 28 Gateway Action Scheduling

Prototype: u32 S26_Sched2608_SetTempUnits(XACT x, IOMPORT IomPort, int DegreesF);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.1 ms.

Notes: This sets the units for all analog input channels that are configured for thermocouple interface. Temperature units
default to degrees C upon module reset. After calling this function, no delay is required before fetching analog
input data.

Example: // Set temperature units to degrees F on the 2608 at MM number 0, IOM port 1.
void *x = S26_SchedOpen(0, 1);
S26_Sched2608_SetTempUnits(x, 1, 1);
S26_SchedExecute(x, 1000, 0);

7.4.6 S26_Sched2608_GetAins()

Function: Schedules the fetching of all analog input values from a model 2608 IOM.

Prototype: u32 S26_Sched2608_GetAins(XACT x, IOMPORT IomPort, double *data, BOOL Integrated);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 4.1 ms.

Notes: Important: The application must call S26_Sched2608_GetCalData() at least once before calling
S26_Sched2608_GetAins(). See section 7.4.9 for details.

Sixteen double-precision values are fetched when the scheduled action executes, so the application’s data buffer
must be large enough to receive all sixteen data values. One data value is fetched for each of the 2608’s analog
input channels. This action does not cause the analog input channels to be digitized; it simply fetches the
previously digitized values. Excluding communication latency, the fetched values range in age from 0 to 2
milliseconds for snapshot values, or from 0 to 16 (or 20, if the power line frequency has been declared to be 50 Hz)
milliseconds for integrated values.

For each analog input channel, the fetched data value is represented in units that are appropriate for the declared
input type that was specified in a prior call to S26_Sched2608_SetAinTypes(). See section 7.4.2 for details.
Thermocouple channels will be returned in either degrees C (default) or F, depending on the units selected in any
prior call to S26_Sched2608_SetTempUnits().

When the 2608 module is reset, or when the client calls S26_Sched2608_SetAinTypes(), the client must wait at
least 32 milliseconds before calling S26_Sched2608_GetAins(). This delay ensures that the digitizer will have
enough time to acquire valid data for all analog input channels before the data is passed to the client.

Example: // Do a calibrate and read snapshot data from the 2608 at MM number 0, IOM port 1.
double ain[16];

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

DegreesF int Set to 0 for degrees C, or to 1 for degrees F.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

data double * Pointer to a 16-element application buffer that is to receive the analog input data
values.

Integrated int Set to 0 to fetch the “snapshot” values, or set to 1 to fetch the “integrated” values.

Sensoray 2600 Programming Guide 29 Gateway Action Scheduling

void *x = S26_SchedOpen(0, 1);
S26_Sched2608_GetCalData(x, 1, 0);
S26_Sched2608_GetAins(x, 1, ain, 0);
S26_SchedExecute(x, 1000, 0);

7.4.7 S26_Sched2608_GetAinTypes()

Function: Schedules the fetching of all programmed analog input types from a model 2608 IOM.

Prototype: u32 S26_Sched2608_GetAinTypes(XACT x, IOMPORT IomPort, u8 *types);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.9 ms.

Notes: The fetched values are the enumerated input types that were registered with the middleware when they were
programmed, after validation against the gain flags that are returned from the 2608 in response to a
OP_AIO_GETINPUTRANGES action.

There are two possible reasons for differences between the fetched and previously programmed values: (1) an
illegal type was specified when the input types were programmed, or (2) the 2608 IOM was unexpectedly reset. In
either case, all sixteen of the IOM’s registered analog input types will be reset to their default values
(RAW_LG_TYPE) when this scheduled action is executed.

Example: // Get the analog input types from the 2608 at MM number 0, IOM port 1.
u8 aintypes[16];
void *x = S26_SchedOpen(0, 1);
S26_Sched2608_GetAinTypes(x, 1, aintypes);
S26_SchedExecute(x, 1000, 0);

7.4.8 S26_Sched2608_GetAout()

Function: Schedules the fetching of one analog output setpoint from a model 2608 IOM.

Prototype: u32 S26_Sched2608_GetAout(XACT x, IOMPORT IomPort, u8 chan, double *volts);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.9 ms.

Notes: In most cases the fetched setpoint value will equal the last programmed value. The exception to this is if the 2608
IOM was unexpectedly reset, in which case the fetched setpoint will be reset to zero.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

types u8 * Pointer to a 16-byte application buffer that is to receive the programmed, enumerated
analog input types for all analog input channels.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 Analog output channel number. Valid channel numbers range from 0 to 3 on model
2608-4, or from 0 to 7 on model 2608-8. There are no analog output channels on
model 2608-0.

volts double * Pointer to a double-precision value that is to receive the fetched setpoint value. The
fetched value will be expressed as a voltage, with a value in the range from -10.0 to
+10.0.

Sensoray 2600 Programming Guide 30 Gateway Action Scheduling

Example: // Get the analog output channel 2 setpoint from the 2608 at MM number 0, IOM port 1.
double setpoint;
void *x = S26_SchedOpen(0, 1);
S26_Sched2608_GetAout(x, 1, 2, setpoint);
S26_SchedExecute(x, 1000, 0);

7.4.9 S26_Sched2608_GetCalData()

Function: Schedules the fetching of calibration data from a model 2608 IOM.

Prototype: u32 S26_Sched2608_GetCalData(XACT x, IOMPORT IomPort, short *caldata);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 3.3 ms.

Notes: S26_Sched2608_GetCalData() schedules the fetching of calibration data that is used internally by the
middleware. The middleware uses the calibration data to perform offset and gain corrections for voltage
measurements and for reference-junction compensation for thermocouple measurements. In most applications it is
sufficient to call this function with the caldata argument set to zero because the typical application has no need
for direct access to calibration data.

S26_Sched2608_GetCalData() must be called at least once before calling S26_Sched2608_GetAins(). In
addition, S26_Sched2608_GetCalData() should be called as needed to minimize errors due to circuit warm-up,
ambient temperature drift and thermal transients. The individual situation dictates when and how often this
function should be called, but as general rules-of-thumb:

q If S26_Sched2608_GetAins() is called infrequently, call S26_Sched2608_GetCalData() just before each
call to S26_Sched2608_GetAins().

q If S26_Sched2608_GetAins() is called frequently, call S26_Sched2608_GetCalData() periodically. The
rate at which these periodic calls are made depends mostly on the 2608’s environment. Higher rates are
required where the 2608 is subjected to sudden temperature changes; in such cases once-per-second is a
suitable rate. In more stable environments, once per ten seconds may be adequate. Of course, if time permits
it is also permissible to simply call S26_Sched2608_GetCalData() just before each call to
S26_Sched2608_GetAins().

Example: See the example in section 7.4.6.

7.4.10 S26_Sched2608_ReadEeprom()

Function: Schedules the fetching of one data byte from the EEPROM on a model 2608 IOM.

Prototype: u32 S26_Sched2608_ReadEeprom(XACT x, IOMPORT IomPort, u8 address, u8 *value);

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

caldata short * Pointer to a 12*16-bit application buffer that is to receive the calibration data. Set to
zero if the application is not interested in receiving calibration data (this is the case for
most applications).

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

address u8 EEPROM memory address, in range 0x00 to 0xFF.

value u8 * Pointer to application u8 buffer that is to receive the EEPROM data byte.

Sensoray 2600 Programming Guide 31 Gateway Action Scheduling

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.8 ms.

Notes: EEPROM addresses 0x00 through 0xAF are reserved for use by the middleware. Addresses 0xB0 through 0xFF are
available for general application use.

Example: // Read EEPROM byte at address 0xB0 from the 2608 at MM number 0, IOM port 1.
u8 eeval;
void *x = S26_SchedOpen(0, 1);
S26_Sched2608_ReadEeprom(x, 1, 0xB0, &eeval);
S26_SchedExecute(x, 1000, 0);

7.4.11 S26_Sched2608_SetAinTypes()

Function: Schedules the programming of all analog input types on a model 2608 IOM.

Prototype: u32 S26_Sched2608_SetAinTypes(XACT x, IOMPORT IomPort, const u8 *types);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.9 ms.

Notes: S26_Sched2608_SetAinTypes() informs the middleware as to what sensor types and input ranges are being used
on the target IOM’s analog input channels. These type declarations are used by the middleware to convert
digitized input values to engineering units when S26_Sched2608_GetAins() executes. In addition to registering
the input types with the middleware, S26_Sched2608_SetAinTypes() schedules the programming of the input
ranges for all analog input channels, as appropriate for the declared types.

Example: // Specify the input types.
u8 SensorTypes[16] = {
 V_10_TYPE, V_10_TYPE, V_10_TYPE, V_10_TYPE, // Chan 0-7: ±10V range.
 V_10_TYPE, V_10_TYPE, V_10_TYPE, V_10_TYPE,
 V_001_TYPE, V_001_TYPE, V_001_TYPE, V_001_TYPE, // Chan 8-11: ±100mV range.
 TC_K_TYPE, TC_K_TYPE, TC_K_TYPE, TC_K_TYPE // Chan 9-15: K thermocouples.
};

// Program the input types for the model 2608 at MM number 0, IOM port 1.
void *x = S26_SchedOpen(0, 1);
S26_Sched2608_SetAinTypes(x, 1, SensorTypes);
S26_SchedExecute(x, 1000, 0);

7.4.12 S26_Sched2608_SetAout()

Function: Schedules the programming of one analog output setpoint on a model 2608 IOM.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

types u8 * Pointer to a 16-byte application buffer that contains the enumerated analog input types
for all analog input channels. See section 7.4.2 for details.

Sensoray 2600 Programming Guide 32 Gateway Action Scheduling

Prototype: u32 S26_Sched2608_SetAout(XACT x, IOMPORT IomPort, u8 chan, double volts);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.9 ms.

Example: // Program analog output channel 2 to 5.35V on the 2608 at MM number 0, IOM port 1.
void *x = S26_SchedOpen(0, 1);
S26_Sched2608_SetAout(x, 1, 2, 5.35);
S26_SchedExecute(x, 1000, 0);

7.4.13 S26_Sched2608_SetLineFreq()

Function: Schedules the declaration of power line frequency to a model 2608 IOM.

Prototype: u32 S26_Sched2608_SetLineFreq(XACT x, IOMPORT IomPort, u8 freq);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.7 ms.

Notes: The integration period for the “integrated” adc values defaults to 16 milliseconds to help reject power line noise.
This action enables the application to change the integration period to 20 milliseconds in cases where the power
line frequency is 50 Hz.

Example: // Declare 50 Hz line frequency to the 2608 at MM number 0, IOM port 1.
void *x = S26_SchedOpen(0, 1);
S26_Sched2608_SetLineFreq(x, 1, 1);
S26_SchedExecute(x, 1000, 0);

7.4.14 S26_2608_WriteEeprom()

Function: Writes one data byte to the EEPROM on a model 2608 IOM.

Prototype: u32 S26_2608_WriteEeprom(u32 hbd,IOMPORT IomPort,u32 msec,u8 addr,u8 val,u32 retries);

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 Analog output channel number. Valid channel numbers range from 0 to 3 on model
2608-4, or from 0 to 7 on model 2608-8. There are no analog output channels on
model 2608-0.

volts double The desired output voltage: from -10.0 to +10.0.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

freq u8 Enumerated line frequency: 0 = 60 Hz (default), 1 = 50 Hz.

Parameter Type Description

hbd u32 MM handle.

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

msec u32 Maximum time, in milliseconds, to wait for a response before declaring a time-out.

addr u8 EEPROM memory address, in range 0x00 to 0xFF.

val u8 Data value that is to be written to the EEPROM.

retries u32 Maximum number of transaction retry attempts.

Sensoray 2600 Programming Guide 33 Gateway Action Scheduling

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.8 ms.

Notes: EEPROM addresses 0x00 through 0xAF are reserved for use by the middleware; applications should not write to
any locations in this reserved address range. Addresses 0xB0 through 0xFF are available for application use.

Note that this function executes an EEPROM write, rather than just scheduling one.

Example: // Write 0x05 to EEPROM address 0xB0 on the 2608 at MM number 0, IOM port 1.
S26_2608_WriteEeprom(0, 1, 1000, 0xB0, 0x05, 1);

7.5 Model 2610 Digital IOM
The functions in this section are used to schedule IOM actions for Model 2610 48-channel Digital IOMs. These functions are
applicable only to Model 2610 IOMs. Any attempt to call these functions for other IOM types will result in a GWERR_IOMTYPE
transaction error. Note that these functions only schedule IOM actions into a transaction; they do not cause the actions to be
immediately executed.

See section 6.2.2 for programming examples that show how to use these functions. For additional information on the IOM actions
that are invoked by these functions, see the Model 2600 Family Instruction Manual.

7.5.1 Type-Specific Errors

In addition to the common IOM status bit flags (STATUS_RST and STATUS_CERR), this IOM type supports the following
type-specific flag. If this flag is asserted, a transaction error of type GWERR_IOMSPECIFIC will be generated:

7.5.2 S26_Sched2610_GetInputs()

Function: Schedules the fetching of all DIO input states from a model 2610 IOM.

Prototype: u32 S26_Sched2610_GetInputs(XACT x, IOMPORT IomPort, u8 *states);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 1.3 ms.

Notes: The fetched state values represent the debounced, physical states of all DIO channels. Because the inputs are
sampled every 2 milliseconds, and the debounce period is 10 milliseconds, the returned state values will all have an
age ranging from 10 to 12 milliseconds, plus any network communication latency. The physical states of all DIO
channels are returned, regardless of their respective operating modes.

Example: // Get all DIO input states from the 2610 at MM number 0, IOM port 2.
u8 dins[6];
void *x = S26_SchedOpen(0, 1);
S26_Sched2610_GetInputs(x, 2, dins);
S26_SchedExecute(x, 1000, 0);

Symbolic Name Description

STATUS_2610_STRM An error was detected in the serial data stream that is used to control the DIO
output drivers. This flag can be cleared by invoking a ClearStatus action.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

states u8 * Pointer to 6-byte application buffer that is to receive the input states of the
48 digital I/O channels. The first byte receives channels 0 (lsb) to 7 (msb),
the second byte receives channels 8 (lsb) to 15 (msb), and so on.

Sensoray 2600 Programming Guide 34 Gateway Action Scheduling

7.5.3 S26_Sched2610_GetModes()

Function: Schedules the fetching of the operating modes for DIO channels 0 to 7 from a model 2610 IOM.

Prototype: u32 S26_Sched2610_GetModes(XACT x, IOMPORT IomPort, u8 *modes);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.8 ms.

Example: // Get DIO channel 0-7 operating modes from the 2610 at MM number 0, IOM port 2.
u8 modes;
void *x = S26_SchedOpen(0, 1);
S26_Sched2610_GetModes(x, 2, &modes);
S26_SchedExecute(x, 1000, 0);

7.5.4 S26_Sched2610_GetModes32()

Function: Schedules the fetching of the operating modes for DIO channels 0 to 31 from a model 2610 IOM.

Prototype: u32 S26_Sched2610_GetModes32(XACT x, IOMPORT IomPort, u8 *modes);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 1.1 ms.

Notes: This function is compatible with 7410 firmware version 1.02 or higher. Earlier firmware versions support only
eight pwm channels.

Example: // Get DIO channel 0-31 operating modes from the 2610 at MM number 0, IOM port 2.
u8 modes[4];
void *x = S26_SchedOpen(0, 1);
S26_Sched2610_GetModes32(x, 2, modes);
S26_SchedExecute(x, 1000, 0);

7.5.5 S26_Sched2610_GetOutputs()

Function: Schedules the fetching of all 48 DIO programmed output states from a model 2610 IOM.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

modes u8 * Pointer to a 1-byte application buffer that is to receive the channel mode info. The
byte indicates the operating modes for DIO channels 0 to 7. Each bit is associated
with a channel number. For example, bit 4 is associated with channel 4. A bit is set to
one when operating in the PWM mode, or to zero in the Standard mode.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

modes u8 * Pointer to a 4-byte application buffer that is to receive the channel mode info. The
bytes indicates the operating modes for DIO channels 0 to 31. Each bit is associated
with a channel number. For example, bit 4 of modes[0] is associated with channel 4.
A bit is set to one when operating in the PWM mode, or to zero in the Standard mode.

Sensoray 2600 Programming Guide 35 Gateway Action Scheduling

Prototype: u32 S26_Sched2610_GetOutputs(XACT x, IOMPORT IomPort, u8 *states);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 1.3 ms.

Notes: This function fetches the programmed output driver states of all DIO channels. Note that the programmed output
driver states may not correspond exactly to the physical channel states because some channels may be driven by
external signal sources. In the case of channels that have been configured for the PWM mode, this function returns
indeterminate state values.

Example: // Get all DIO output states from the 2610 at MM number 0, IOM port 2.
u8 douts[6];
void *x = S26_SchedOpen(0, 1);
S26_Sched2610_GetOutputs(x, 2, douts);
S26_SchedExecute(x, 1000, 0);

7.5.6 S26_Sched2610_GetPwmRatio()

Function: Schedules the fetching of the PWM ratio for one DIO channel from a model 2610 IOM.

Prototype: u32 S26_Sched2610_GetPwmRatio(XACT x, IOMPORT IomPort, u8 chan, u8 *OnTime, u8 *OffTime);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.9 ms.

Example: // Fetch the PWM ratio for DIO channel 5 on the 2610 at MM number 0, IOM port 2.
u8 ontime;
u8 offtime;
void *x = S26_SchedOpen(0, 1);
S26_Sched2610_GetPwmRatio(x, 2, 5, &ontime, &offtime);
S26_SchedExecute(x, 1000, 0);

7.5.7 S26_Sched2610_SetModes()

Function: Schedules the programming of the operating modes for DIO channels 0 to 7 on a model 2610 IOM.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

states u8 * Pointer to 6-byte application buffer that is to receive the output states of the 48 digital
I/O channels. The first byte receives channels 0 (lsb) to 7 (msb), the second byte
receives channels 8 (lsb) to 15 (msb), and so on.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The DIO channel number that is to be queried. Legal values range from 0 to 7 for
7410 firmware version 1.01 and below, or 0 to 31 for firmware versions 1.02 and
higher.

OnTime u8 * Pointer to a 1-byte application buffer that is to receive the programmed PWM on time
expressed in 2 msec increments.

OffTime u8 * Pointer to a 1-byte application buffer that is to receive the programmed PWM off time
expressed in 2 msec increments.

Sensoray 2600 Programming Guide 36 Gateway Action Scheduling

Prototype: u32 S26_Sched2610_SetModes(XACT x, IOMPORT IomPort, u8 *modes);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.8 ms.

Example: // Set DIO channel 0-7 operating modes on the 2610 at MM number 0, IOM port 2.
// Channels 0 to 5: Standard mode, channels 6 and 7: PWM mode.
u8 modes = 0xC0;
void *x = S26_SchedOpen(0, 1);
S26_Sched2610_SetModes(x, 2, &modes);
S26_SchedExecute(x, 1000, 0);

7.5.8 S26_Sched2610_SetModes32()

Function: Schedules the programming of the operating modes for DIO channels 0 to 31 on a model 2610 IOM.

Prototype: u32 S26_Sched2610_SetModes32(XACT x, IOMPORT IomPort, u8 *modes);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 1.1 ms.

Notes: This function is compatible with 7410 firmware version 1.02 or higher. Earlier firmware versions support only
eight pwm channels.

Example: // Set DIO channel 0-31 operating modes on the 2610 at MM number 0, IOM port 2.
// Channels 6 and 7: PWM mode, all other channels: Standard mode.
u8 modes[4] = { 0xC0, 0x00, 0x00, 0x00 };
void *x = S26_SchedOpen(0, 1);
S26_Sched2610_SetModes32(x, 2, modes);
S26_SchedExecute(x, 1000, 0);

7.5.9 S26_Sched2610_SetOutputs()

Function: Schedules the programming of all 48 DIO output states on a model 2610 IOM.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

modes u8 * Pointer to a 1-byte application buffer that contains the channel mode flags. The byte
indicates the operating modes for DIO channels 0 to 7. Each bit is associated with a
channel number. For example, bit 4 is associated with channel 4. Set a bit to one to
operate in the PWM mode, or to zero to operate in the Standard mode.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

modes u8 * Pointer to a 4-byte application buffer that contains the channel mode flags. The bytes
indicates the operating modes for DIO channels 0 to 31. Each bit is associated with a
channel number. For example, bit 4 of modes[0] is associated with channel 4. Set a
bit to logic one for PWM mode, or to zero for Standard mode.

Sensoray 2600 Programming Guide 37 Gateway Action Scheduling

Prototype: u32 S26_Sched2610_SetOutputs(XACT x, IOMPORT IomPort, u8 *states);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 1.3 ms.

Example: // Program all DIO output states on the 2610 at MM number 0, IOM port 2.
u8 douts[6] = { 0x01, 0x23, 0x45, 0x67, 0x89, 0xAB }; // Desired DIO states.
void *x = S26_SchedOpen(0, 1);
S26_Sched2610_SetOutputs(x, 2, douts);
S26_SchedExecute(x, 1000, 0);

7.5.10 S26_Sched2610_SetPwmRatio()

Function: Schedules the programming of the PWM ratio for one DIO channel on a model 2610 IOM.

Prototype: u32 S26_Sched2610_SetPwmRatio(XACT x, IOMPORT IomPort, u8 chan, u8 OnTime, u8 OffTime);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.9 ms.

Example: // Set the PWM ratio for DIO channel 5 on the 2610 at MM number 0, IOM port 2.
// PWM ratio = on for 20 msec, off for 30 msec.
void *x = S26_SchedOpen(0, 1);
S26_Sched2610_SetPwmRatio(x, 2, 5, 10, 15);
S26_SchedExecute(x, 1000, 0);

7.6 Model 2612 Analog IOM
The functions in this section are used to schedule IOM actions for Model 2612 Analog IOMs. These functions are applicable only
to Model 2612 IOMs. Any attempt to call these functions for other IOM types will result in a GWERR_IOMTYPE transaction error.
Note that some of these functions only schedule IOM actions into a transaction; they do not cause the actions to be immediately
executed.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

states u8 * Pointer to 6-byte application buffer that contains the desired output states of the 48
digital I/O channels. The first byte contains channels 0 (lsb) to 7 (msb), the second
byte contains channels 8 (lsb) to 15 (msb), and so on.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The DIO channel number that is to be programmed. Legal values range from 0 to 7 for
7410 firmware version 1.01 and below, or 0 to 31 for firmware versions 1.02 and
higher.

OnTime u8 PWM on time, expressed in 2 msec increments, to be programmed.

OffTime u8 PWM off time, expressed in 2 msec increments, to be programmed.

Sensoray 2600 Programming Guide 38 Gateway Action Scheduling

7.6.1 Type-Specific Errors

In addition to the common IOM status bit flags (STATUS_RST and STATUS_CERR), this IOM type supports the following
type-specific flags. If any of these flags are asserted, a transaction error of type GWERR_IOMSPECIFIC will be generated:

7.6.2 Analog Input Modes

Input mode registers allow to set timing parameters of the analog-digital conversion for each channel. The enumerated
oversample ratio settings, speed multiplier and reference voltages type names are defined in the App2600.h
header file.

7.6.3 S26_Sched2612_SetMode()

Schedules the programming of the measurement mode for one channel on model 2612 IOM.

Prototype: u32 S26_Sched2612_SetMode(XACT x, IOMPORT IomPort, u8 chan, u32 mode);

The mode parameter contains the OSR (oversample ratio) selector and speed multiplier enable bit:

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Symbolic Name Description

STATUS_2612_OVERFLOW Differential input voltage exceeds ADC positive input limit.

STATUS_2612_UNDERFLOW Differential input voltage exceeds ADC negative input limit.

STATUS_2612_EEPROM EEPROM read/write error. This flag will be asserted if the 2412’s internal EEPROM checksum is invalid.
This can happen if S26_2612_RestoreCalibrations() is called before
S26_2612_RestoreCalibrations() has been called at least once for the target channel.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The channel number that is to be programmed. Legal values range from 0 to 3.

mode u32 One of the OSR symbolic constants. To use the speed multiplier mode, the MODE_2X
symbolic constant must be ORed with the OSR.

031 20

0 0 0 0 0 0 0 0

1924

OSRSEL

816

The OSRSEL field selects the oversample ratio, which in
turn configures a number of other behavioral attributes.
Any of the following values may be specified:

The M bit enables the speed multiplier when set to logic
one, and it disables the multiplier when set to zero.
When enabled, the speed multiplier doubles the
conversion rate at the expense of one additional cycle
of latency.

The most significant nibble must be set to 0xA. All
other bits, which are reserved for future use, must be
set to zero.

OSRSEL OSR
RMS
Noise
(µV)

Convert
Rate
(Hz)

First
Notch
(Hz)

–3dB
Point
(Hz)

Effective
Bits

1 64 23 3515.6 28125 1696 17.0
2 128 4.5 1757.8 14062.5 848 20.1
3 256 2.8 878.9 7031.3 424 20.8
4 512 2.0 439.5 3515.6 212 21.3
5 1024 1.4 219.7 1757.8 106 21.8
6 2048 1.1 109.9 878.9 53 22.1
7 4096 0.72 54.9 439.5 26.5 22.7
8 8192 0.53 27.5 219.7 13.2 23.2
9 16384 0.35 13.75 109.9 6.6 23.8
15 32768 0.28 6.875 54.9 3.3 24.1

M 0 0 0 0 0 0 0 0 0 0 0

Sensoray 2600 Programming Guide 39 Gateway Action Scheduling

Benchmark: 0.8 ms.

Notes: This function, as well as S26_Sched2612_SetVoltages(), should be called before calibrating or acquiring
digitized data from an analog input channel. Digitized data may be fetched from the 2612 immediately after calling
this function; no delay is required.

Example: // Set measurement mode on the 2612 at MM number 0, IOM port 10, channel 2.
// Set the OSR to 32768 and enable the speed multiplier.
void *x = S26_SchedOpen(0, 1);
S26_Sched2612_SetMode(x, 10, 2, OSR_32768 | MODE_2X);
S26_SchedExecute(x, 1000, 0);

7.6.4 S26_Sched2612_SetVoltages()

Schedules the programming of all power output channels on a model 2612 IOM.

Prototype: u32 S26_Sched2612_SetVoltages(XACT x, IOMPORT IomPort, u8 volts);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.3 ms.

Notes: This function establishes the power output voltages on all channels. These output voltages are typically used to
supply excitation to sensors such as strain gauges.

This function, as well as S26_Sched2612_SetMode(), should be called before calibrating or acquiring digitized
data from an analog input channel. Since a change in the output voltage will cause a step change in the associated
input channel’s applied voltage, there will be a delay of one conversion time before valid digitized data becomes
available.

Example: // Set reference voltage on the 2612 at MM number 0, IOM port 10:
// channel 0 to 2V, channel 1 to 1.25V, channel 2 to 5V and channel 3 to 3V.
void *x = S26_SchedOpen(0, 1);
S26_Sched2612_SetVoltages(x, 10,
 REF_OUT_2V |
 (REF_OUT_1V << 2) |
 (REF_OUT_5V << 4) |
 (REF_OUT_3V << 6)
);
S26_SchedExecute(x, 1000, 0);

7.6.5 S26_Sched2612_GetValues()

Schedules the fetching of the digitized values of all analog input channels on model 2612 IOM.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

volts u8 A collection of four, two-bit fields. Each field specifies the output voltage for a power output
channel.

Two-bit field for each channel has to be set to one of the REF_OUT_xV values. Bits 0,1 are
responsible for channel 0, bits 2,3 - for channel 1, bits 4,5 - for channel 2 and bits 6,7 - for
channel 3.

Sensoray 2600 Programming Guide 40 Gateway Action Scheduling

Prototype: u32 S26_Sched2612_GetValues(XACT x, IOMPORT IomPort, s32 *values, u8 *tstamp);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 6.2 ms.

Example: // Get raw values on the 2612 at MM number 0, IOM port 10.
s32 values[4];
u8 tstamp[4];
void *x = S26_SchedOpen(0, 1);
S26_Sched2612_GetValues(x, 10, vbuff, tbuff);
S26_SchedExecute(x, 1000, 0);

7.6.6 S26_Sched2612_RefreshData()

Schedules the fetching of the raw values of all channels to internal middleware buffers on a model 2612 IOM.

Prototype: u32 S26_Sched2612_RefreshData(XACT x, IOMPORT IomPort);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.1 ms.

Notes: This function does the actual work of scheduling the transfer of measured raw data from the 2612 IOM into a
middleware buffer. Once the raw data values have been transferred to the middleware buffer, the application
program can then call S26_2612_GetCalibratedValue() to obtain corrected data in the desired engineering
units.

This function must be called periodically to refresh internally buffered data. To avoid a timestamp overflow this
period must be less than 256 sample periods. For example, if the sample rate is 55 Hz, the data must be refreshed at
least every 4.6 (255 / 55) seconds.

Since all 2612-specific functiona are thread-safe, it is possible to call S26_Sched2612_RefreshData() from one
thread to fetch raw data into the internal middleware buffer, while another thread calls
S26_2612_GetCalibratedValue() to acquire corrected data for use by the application.

Example: // Get buffered values on the 2612 at MM number 0, IOM port 10.
void *x = S26_SchedOpen(0, 1);
S26_Sched2612_RefreshData(x, 10);
S26_SchedExecute(x, 1000, 0);

7.6.7 S26_2612_RegisterZero()

Establishes the “zero offset” on one analog input channel on a model 2612 IOM.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

values s32 * Pointer to array of 4*32bit buffer to receive the values.

tstamp u8 * Pointer to array of 4*8bit buffer to receive the last sample numbers (timestamps).

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

Sensoray 2600 Programming Guide 41 Gateway Action Scheduling

Prototype: u32 S26_2612_RegisterZero(u32 hbd, IOMPORT IomPort, u32 msec, u8 chan, u32 nsmp);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: (tsample + 0.4 ms) * nsmp, where tsample is the target channel’s sample period.

Notes: This function is part of the calibration process for an analog input channel. It calculates the “zero offset” value for
an analog input channel and stores the value in an internal buffer. The target channel will be measured in rapid
succession a number of times, as specified by nsmp. The resulting digitized values are averaged and then stored
for later use. Later, when the application program samples the analog input, the offset value is used to offset-adjust
the resulting digital data value.

When this function is called, an actual zero value reference signal must be applied to the measurement inputs of the
target analog input channel, and the reference level must be held constant until the measurement is finished.

Note that this function performs its action when called, unlike many other middlware functions that simply
schedule future actions.

Example: // Register zero values on the 2612 at MM number 0, IOM port 10, channel 2.
S26_2612_RegisterZero(0, 10, 1000, 2, 100);

7.6.8 S26_2612_RegisterSpan()

Measures and calculates the “positive full scale” value for one channel on a model 2612 IOM.

Prototype: u32 S26_2612_RegisterSpan(u32 hbd, IOMPORT IomPort, u32 msec, u8 chan, u32 nsmp, double load);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: (tsample + 0.4 ms) * nsmp, where tsample is the target channel’s sample period.

Notes: This function calculates the “positive full scale” value and stores the value in an internal buffer. The actual
positive full scale value must be applied to the corresponding channel’s input before start of calibration and held
until the function returns. This function is called as the final step in a two-step physical gauge calibration
procedure.

When this function executes, nsmp measurements are taken, the average value is calculated and stored as the
“positive full scale” value for one channel. The stored value will be used later to calculate corrected values.

Parameter Type Description

hbd u32 MM handle.

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

msec u32 Maximum time to wait for the gateway response packet, in milliseconds, before declaring a
time-out.

chan u8 The channel number that is to be registered. Legal values range from 0 to 3.

nsmp u32 Number of samples used to average calibration result.

Parameter Type Description

hbd u32 MM handle.

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

msec u32 Maximum time to wait for the gateway response packet, in milliseconds, before declaring a
time-out.

chan u8 The channel number that is to be registered. Legal values range from 0 to 3.

nsmp u32 Number of samples used to average calibration result.

load double Actual value applied to the channel input in any user’s units.

Sensoray 2600 Programming Guide 42 Gateway Action Scheduling

A gauge load parameter, load, must be specified when this function is called. This value represents the difference
between the load that is applied when S26_2612_RegisterZero() was called and the load that is applied when
S26_2612_RegisterSpan() is called. For example, suppose the applied load is 2,000 pounds. The load
parameter should be set to 2,000.0. After executing this command, S26_Sched2612_GetCalibratedValues()
will return data from this channel in units of pounds. In this case, an applied load of 153.7 pounds, for example,
would cause S26_Sched2612_GetCalibratedValues() to return the value 153.7.

Note that this function performs its action when called, unlike many other middlware functions that simply
schedule future actions.

Example: // Set span to 2000 pounds on the 2612 at MM number 0, IOM port 10, channel 2.
S26_2612_RegisterSpan(0, 10, 1000, 2, 100, 2000.0);

7.6.9 S26_2612_RegisterTare()

Measures and calculates the “permanent offset” (i.e., tare) value for one channel on a model 2612 IOM

Prototype: u32 S26_2612_RegisterTare(u32 hbd, IOMPORT IomPort, u32 msec, u8 chan, u32 nsmp);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: (tsample + 0.4 ms) * nsmp, where tsample is the target channel’s sample period.

Notes: This function calculates the “permanent offset” (tare) value and stores the value in an internal buffer. The actual
tare value must be applied to the corresponding channel’s input before start of calibration and held until the
function returns. Taring is accomplished by adjusting the data offset so that data returned by
S26_Sched2612_GetCalibratedValues() will equal zero at the current load condition.

When this function executes, nsmp measurements are taken, the average value is calculated and stored as the
“permanent offset” (tare) for one channel. The stored value will be used later to calculate corrected values.

Note that this function performs its action when called, unlike many other middlware functions that simply
schedule future actions.

Example: // Register tare on the 2612 at MM number 0, IOM port 10, channel 2.
S26_2612_RegisterTare(0, 10, 1000, 2, 100);

7.6.10 S26_2612_GetCalibratedValue()

Calculates and returns the corrected, measured value for one channel on a model 2612 IOM.

Prototype: double S26_2612_GetCalibratedValue(u32 hbd, IOMPORT IomPort, u8 chan, u32 *sample);

Returns: Calibrated value.

Parameter Type Description

hbd u32 MM handle.

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

msec u32 Maximum time to wait for the gateway response packet, in milliseconds, before declaring a
time-out.

chan u8 The channel number that is to be registered. Legal values range from 0 to 3.

nsmp u32 Number of samples used to average calibration result.

Parameter Type Description

hbd u32 MM handle.

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The channel number that is to be registered. Legal values range from 0 to 3.

sample u32 * Pointer to 32bit buffer to receive the sample counter value.

Sensoray 2600 Programming Guide 43 Gateway Action Scheduling

Benchmark: << 0.1 ms (no network transactions used).

Notes: This function converts the specified channel’s raw digitized value, which was previously acquired by calling
S26_Sched2612_RefreshData() , to a corrected value. The corrected value is computed by this function as
follows:

 corrected_value = (raw_value - offset) * scale - tare

 The offset, scale and tare values, and consequently the engineering units that apply to the returned value,
must have been previously established by calling S26_2612_RegisterZero(), S26_2612_RegisterSpan() and
S26_2612_RegisterTare(), or set with S26_2612_SetCalibrations().

Note that this function performs its action when called, unlike many other middlware functions that simply
schedule future actions.

Example: // Get calibrated value on the 2612 at MM number 0, IOM port 10, channel 2.
S26_2612_GetCalibratedValue(0, 10, 2, sample_pointer);

7.6.11 S26_2612_GetOffset()

Returns the offset value for one channel on a model 2612 IOM.

Prototype: double S26_2612_GetOffset(u32 hbd, IOMPORT IomPort, u8 chan);

Returns: Offset value.

Benchmark: << 0.1 ms (no network transactions used).

Notes: This function returns the offset calibration parameter from a previously calibrated channel. The returned value
can be used by S26_2612_SetCalibrations() to restore a channel calibration without having to perform a
physical calibration.

Note that this function performs its action when called, unlike many other middlware functions that simply
schedule future actions.

Example: // Get offset value on the 2612 at MM number 0, IOM port 10, channel 2.
S26_2612_GetOffset(0, 10, 2);

7.6.12 S26_2612_GetScale()

Returns the scale value for one channel on a model 2612 IOM.

Prototype: double S26_2612_GetScale(u32 hbd, IOMPORT IomPort, u8 chan);

Returns: Scale value.

Benchmark: << 0.1 ms (no network transactions used).

Parameter Type Description

hbd u32 MM handle.

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The channel number that is to be registered. Legal values range from 0 to 3.

Parameter Type Description

hbd u32 MM handle.

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The channel number that is to be registered. Legal values range from 0 to 3.

Sensoray 2600 Programming Guide 44 Gateway Action Scheduling

Notes: This function returns the scale calibration parameter from a previously calibrated channel. The returned value can
be used by S26_2612_SetCalibrations() to restore a channel calibration without having to perform a physical
calibration.

Note that this function performs its action when called, unlike many other middlware functions that simply
schedule future actions.

Example: // Get scale value on the 2612 at MM number 0, IOM port 10, channel 2.
S26_2612_GetScale(0, 10, 2);

7.6.13 S26_2612_GetTare()

Returns the tare value for one channel on model 2612 IOM.

Prototype: double S26_2612_GetTare(u32 hbd, IOMPORT IomPort, u8 chan);

Returns: Tare value.

Benchmark: << 0.1 ms (no network transactions used).

Notes: This function returns the tare calibration parameter from a previously calibrated channel. The returned value can
be used by S26_2612_SetCalibrations() to restore a channel calibration without having to perform a physical
calibration.

Note that this function performs its action when called, unlike many other middlware functions that simply
schedule future actions.

Example: // Get tare value on the 2612 at MM number 0, IOM port 10, channel 2.
S26_2612_GetTare(0, 10, 2);

7.6.14 S26_2612_SetCalibrations()

Ses the middleware offset, scale and tare values for one channel on a model 2612 IOM.

Prototype: u32 S26_2612_SetCalibrations(u32 hbd, IOMPORT IomPort, u8 chan, double Offset, double Scale,
double Tare);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: << 0.1 ms (no network transactions used).

Notes: This function establishes all of the calibration values for the specified channel without having to perform a physical
calibration. This is useful in situations where a physical calibration need be performed only one time. For
example, a physical calibration could be performed once and the calibration values could then be obtained by
calling S26_2612_GetOffset(), S26_2612_GetOffset(), and S26_2612_GetOffset(). Later, after the

Parameter Type Description

hbd u32 MM handle.

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The channel number that is to be registered. Legal values range from 0 to 3.

Parameter Type Description

hbd u32 MM handle.

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The channel number that is to be registered. Legal values range from 0 to 3.

Offset double The offset value

Scale double The scale value

Tare double The tare value

Sensoray 2600 Programming Guide 45 Gateway Action Scheduling

middleware has been closed and reopened, this function can be called to restore the calibration values. In many
applications, it is useful to store and retrieve the calibration values from the 2412’s internal EEPROM by calling
S26_2612_SaveCalibrations() and S26_2612_RestoreCalibrations().

Note that this function performs its action when called, unlike many other middlware functions that simply
schedule future actions.

Example: // Set all calibration values on the 2612 at MM number 0, IOM port 10, channel 2.
S26_2612_SetCalibrations(0, 10, 2, Offset, Scale, Tare);

7.6.15 S26_2612_SaveCalibrations()

Saves one channel’s calibration values to internal EEPROM on model 2612 IOM.

Prototype: u32 S26_2612_SaveCalibrations(u32 hbd, IOMPORT IomPort, u32 msec, u8 chan);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 12 ms.

Notes: This function copies the calibration values from internal middleware buffers to the 2612 module’s EEPROM.
Later, the values can be retrieved from the module’s EEPROM by calling S26_2612_RestoreCalibrations().

Note that this function performs its action when called, unlike many other middlware functions that simply
schedule future actions.

Example: // Save calibrations on the 2612 at MM number 0, IOM port 10, channel 2.
S26_2612_SaveCalibrations(0, 10, 1000, 2);

7.6.16 S26_2612_RestoreCalibrations()

Restores one channel’s calibration values from a 2612 IOM’s EEPROM.

Prototype: u32 S26_2612_RestoreCalibrations(u32 hbd, IOMPORT IomPort, u32 msec, u8 chan);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 7 ms.

Notes: This function copies the calibration values from the 2612 module’s EEPROM to internal middleware buffers, thus
activating the new calibration values. It is assumed that S26_2612_SaveCalibrations() was previously called to
store the calibration values in the EEPROM.

Note that this function performs its action when called, unlike many other middlware functions that simply
schedule future actions.

Parameter Type Description

hbd u32 MM handle.

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

msec u32 Maximum time to wait for the gateway response packet, in milliseconds, before declaring a
time-out.

chan u8 The channel number that is to be registered. Legal values range from 0 to 3.

Parameter Type Description

hbd u32 MM handle.

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

msec u32 Maximum time to wait for the gateway response packet, in milliseconds, before declaring a
time-out.

chan u8 The channel number that is to be registered. Legal values range from 0 to 3.

Sensoray 2600 Programming Guide 46 Gateway Action Scheduling

Example: // Restore calibrations on the 2612 at MM number 0, IOM port 10, channel 2.
S26_2612_RestoreCalibrations(0, 10, 1000, 2);

7.7 Model 2620 Counter IOM
The functions in this section are used to schedule IOM actions for Model 2620 4-channel Counter IOMs. These functions are
applicable only to Model 2620 IOMs. Any attempt to call these functions for other IOM types will result in a GWERR_IOMTYPE
transaction error. Note that these functions only schedule IOM actions into a transaction; they do not cause the actions to be
immediately executed.

7.7.1 Type-Specific Errors

This IOM type has no type-specific IOM status flags.

7.7.2 S26_Sched2620_GetCounts()

Function: Schedules the fetching of the latched counts from one counter channel on a model 2620 IOM.

Prototype: u32 S26_Sched2620_GetCounts(XACT x, IOMPORT IomPort, u8 chan, u32 *value, u16 *tstamp);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 1.1 ms when tstamp is zero, 1.6 ms when tstamp is non-zero.

Notes: The fetched value will be the value contained in the target counter’s data latch at the moment the action executes
on the IOM. If tstamp is non-zero, the time stamp value will also be fetched; the fetched time stamp value will be
the value contained in the target counter’s time stamp latch at the moment the action executes on the IOM.

The time stamp value should be fetched only if it is needed as extra communication overhead is required to fetch
this value.

Example: // Get latched counts from counter 3 on the 2620 at MM number 0, IOM port 12.
u32 counts;
void *x = S26_SchedOpen(0, 1);
S26_Sched2620_GetCounts(x, 12, 3, &counts, 0);
S26_SchedExecute(x, 1000, 0);

Example: // Get counts and timestamp from counter 3 on the 2620 at MM number 0, IOM port 12.
u32 counts;
u16 tstamp;
void *x = S26_SchedOpen(0, 1);
S26_Sched2620_GetCounts(x, 12, 3, &counts, &tstamp);
S26_SchedExecute(x, 1000, 0);

7.7.3 S26_Sched2620_GetStatus()

Function: Schedules the fetching of the status of one counter channel from a model 2620 IOM.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The counter channel number that is to be accessed. Legal values range from 0 to 3.

value u32 * Pointer to a 32-bit application buffer that is to receive the counts.

tstamp u16 * Pointer to a 16-bit application buffer that is to receive the time stamp. Specify zero if
you do not need the time stamp value.

Sensoray 2600 Programming Guide 47 Gateway Action Scheduling

Prototype: u32 S26_Sched2620_GetStatus(XACT x, IOMPORT IomPort, u8 chan, u16 *status);

The returned status value has the following format:

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.9 ms.

Notes: The format of the fetched status word is described in the Model 2600 Family Instruction Manual.

Example: // Get status info from counter 3 on the 2620 at MM number 0, IOM port 12.
u16 status;
void *x = S26_SchedOpen(0, 1);
S26_Sched2620_GetStatus(x, 12, 3, &status);
S26_SchedExecute(x, 1000, 0);

7.7.4 S26_Sched2620_SetControlReg()

Function: Triggers a data transfer action for one counter channel on a model 2620 IOM.

Prototype: u32 S26_Sched2620_SetControlReg(XACT x, IOMPORT IomPort, u8 chan, u8 DataVal);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.8 ms.

Notes: Use CTC_TRIG_LATCH to manually transfer the core’s counts to the data latch just before reading the counter. This
must be done, for example, when a channel is configured to operate with a quadrature encoder. This should not be

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The counter channel number that is to be accessed. Legal values range from 0 to 3.

status u16 * Pointer to a 16-bit application buffer that is to receive the status info.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The counter channel number that is to be accessed. Legal values range from 0 to 3.

DataVal u8 Data transfer action to be triggered:
CTC_TRIG_PRELOAD (1) - Preload counter core.
CTC_TRIG_LATCH (2) - Latch counter core.

QDE: Quadrature decoder error. This bit is automatically
reset by this GetStatus action.

LAT: Counter core was latched. This bit is automatically
reset by a GetCounts action.

GO: Counter was enabled by a trigger.

LOD: Counter was pre-loaded. This bit is automatically
reset by this GetStatus action.

EXT: Counter extension bit 32.

UF: Counter underflowed. This bit is automatically reset by
this GetStatus action.

OF: Counter overflowed. This bit is automatically reset by
this GetStatus action.

ZER: Counter value is now zero.

All other bits are reserved for future use.

15
 0

14
 0

13
 0

12
 0

11
 0

10
 0

9
 0

8
 0

7
QDE

6
LAT

5
GO

4
LOD

3
EXT

2
UF

1
OF

0
ZER

Sensoray 2600 Programming Guide 48 Gateway Action Scheduling

done, however, if you have configured a channel so that it’s core is automatically transferred to the latch in
response to an event (e.g., active index input).

Use CTC_TRIG_PRELOAD to manually transfer the Preload0 register into the counter core.

Example: // Latch channel 3 counter core on the 2620 at MM number 0, IOM port 12.
void *x = S26_SchedOpen(0, 1);
S26_Sched2620_SetControlReg(x, 12, 3, CTC_TRIG_LATCH);
S26_SchedExecute(x, 1000, 0);

7.7.5 S26_Sched2620_SetCommonControl()

Function: Schedules the programming of the common control register for all counter channels on a model 2620 IOM.

Prototype: u32 S26_Sched2620_SetCommonControl(XACT x, IOMPORT IomPort, u16 gperiod, u8 tstamp);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.9 ms.

Example: // Set gate period to 1 second, and timestamp resolution to 10 microseconds
// on the 2620 at MM number 0, IOM port 12.
void *x = S26_SchedOpen(0, 1);
S26_Sched2620_SetCommonControl(x, 12, 1000, 1);
S26_SchedExecute(x, 1000, 0);

7.7.6 S26_Sched2620_SetModeEncoder()

Function: Schedules the programming of the operating mode of one counter channel on a model 2620 IOM.

Prototype: u32 S26_Sched2620_SetModeEncoder(XACT x, IOMPORT IomPort, u8 chan, u16 xp, u16 pl, u16 m);

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

gperiod u16 Gate period, in milliseconds, for the time gate generator. This is the gate time applied
to all channels operating as frequency counters that use the internal time gate
generator. Any even value from 2 to 32766 may be specified, resulting in gate times
from 2 milliseconds to 32.766 seconds.

tstamp u8 Timestamp resolution. May be set to one of the following values:
 0 = 1 microsecond.
 1 = 10 microseconds.
 2 = 100 microseconds.
 3 = 1 millisecond.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

Sensoray 2600 Programming Guide 49 Gateway Action Scheduling

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 1.5 ms.

Notes: This function configures a counter channel so that it will interface to either a quadrature-encoded or a single-phase
clock source, with optional index input for preload triggering.

Example: // Configure counter 3 as an encoder interface on the 2620 at MM number 0, IOM port 12.
// Assumes: quadrature encoder, x4 clock multiplier, no index-triggered preloads.
void *x = S26_SchedOpen(0, 1);
S26_Sched2620_SetModeEncoder(x, 12, 3, 0, 0, 3); // Set mode.
S26_SchedExecute(x, 1000, 0);

7.7.7 S26_Sched2620_SetModeFreqMeas()

Function: Schedules the programming of the operating mode of one counter channel on a model 2620 IOM.

Prototype: u32 S26_Sched2620_SetModeFreqMeas(XACT x, IOMPORT IomPort, u8 chan, u16 igate);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 2.0 ms.

Notes: This function configures a counter channel so that it will measure the frequency of an external digital signal applied
to the ClkA input.

A periodic time gate signal is required. Note that it is the period of the gate signal (vs. its time in the active state)
that determines the sampling time for frequency measurement. The gate time is defined as the time between
consecutive rising edges of the gate signal.

The gate signal may be derived from an external signal that is applied to the index input pin or from the internal
time gate generator that is shared by all counter channels. When using the internal time gate generator, the gate
generator should be configured before calling this function; see S26_Sched2620_SetCommonControl() for
details. When using an external time gate generator, the index polarity defaults to active high so that sample
intervals begin in gate (index) rising edges.

The channel’s preload registers are automatically configured by this function. The preload registers should not be
modified while frequency measurement mode is in effect.

chan u8 The counter channel number that is to be accessed. Legal values range from 0 to 3.

xp u16 Index pin polarity: 1 = active low, 0 = active high.

pl u16 Preload upon index leading edge: 0 = disable, 1 = enable.

m u16 Clock mode. Set to one of these values:
0 - quadrature x1, clock on A rising edge, B sets direction.
1 - quadrature x1, clock on A falling edge, B sets direction.
2 - quadrature x2, clock on both A edges, B sets direction.
3 - quadrature x4, clock on all A and B edges.
4 - mono, clock on A rising edge, B sets direction.
5 - mono, clock on A falling edge, B sets direction.
6 - mono, clock on both A edges, B sets direction.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The counter channel number that is to be accessed. Legal values range from 0 to 3.

igate u16 Time gate signal source: 0 = external signal on index input, 1 = internal gate generator.

Parameter Type Description

Sensoray 2600 Programming Guide 50 Gateway Action Scheduling

Example: // Configure counter 3 as a frequency counter on the 2620 at MM number 0, IOM port 12.
// Assumes: using previously configured internal time gate generator.
void *x = S26_SchedOpen(0, 1);
S26_Sched2620_SetModeFreqMeas(x, 12, 3, 1); // Set mode.
S26_SchedExecute(x, 1000, 0);

7.7.8 S26_Sched2620_SetModePeriodMeas()

Function: Schedules the programming of the operating mode of one counter channel on a model 2620 IOM.

Prototype: u32 S26_Sched2620_SetModePeriodMeas(XACT x, IOMPORT IomPort, u8 chan, u16 ActLowX);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 2.0 ms.

Notes: This function configures a counter channel so that it will measure the period of an external digital waveform
applied to the index input.

Example: // Configure counter 3 as a frequency counter on the 2620 at MM number 0, IOM port 12.
// Assumes: both signal edges have similar jitter, so polarity is don’t care.
void *x = S26_SchedOpen(0, 1);
S26_Sched2620_SetModePeriodMeas(x, 12, 3, 0); // Set mode.
S26_SchedExecute(x, 1000, 0);

7.7.9 S26_Sched2620_SetModePulseGen()

Function: Schedules the programming of the operating mode of one counter channel on a model 2620 IOM.

Prototype: u32 S26_Sched2620_SetModePulseGen(XACT x, IOMPORT IomPort, u8 chan, u16 xp, u16 pl, u16 op);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 1.5 ms.

Notes: This function configures a counter channel so that it will generate a single output pulse in response to a hardware or
software trigger. The duration of the output pulse is determined by the value stored in the Preload0 register.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The counter channel number that is to be accessed. Legal values range from 0 to 3.

ActLowX u16 Index pin polarity: 1 = active low, 0 = active high. This doesn’t matter unless one
signal edge has more jitter than the other edge.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The counter channel number that is to be accessed. Legal values range from 0 to 3.

xp u16 Index pin polarity: 1 = active low, 0 = active high. This is a “don’t care” if pl is set to
zero.

pl u16 Hardware triggered by index input: 0 = disable, 1 = enable. Note that a pulse can
always be triggered by software.

op u16 Output pin polarity: 1 = active low, 0 = active high.

Sensoray 2600 Programming Guide 51 Gateway Action Scheduling

Example: // Configure counter 3 as a pulse generator on the 2620 at MM number 0, IOM port 12.
// Assumes: active low output pulse, hardware triggered by active low signal.
void *x = S26_SchedOpen(0, 1);
S26_Sched2620_SetModePulseGen(x, 12, 3, 1, 1, 3); // Set mode.
S26_SchedExecute(x, 1000, 0);

7.7.10 S26_Sched2620_SetModePulseMeas()

Function: Schedules the programming of the operating mode of one counter channel on a model 2620 IOM.

Prototype: u32 S26_Sched2620_SetModePulseMeas(XACT x, IOMPORT IomPort, u8 chan, u16 ActLowX);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 1.5 ms.

Notes: This function configures a counter channel so that it will measure the width of pulses applied to the index input.
When a measurement is completed, the result is latched and the next measurement begins automatically. The most
recently acquired measurement value may be read from the latch at any time.

The channel’s preload registers are automatically configured by this function. The preload registers should not be
modified while pulse width measurement mode is in effect.

Example: // Configure counter 3 for pulse width measurement on the 2620 at MM number 0, IOM port 12.
// Assumes: active high pulse is being measured.
void *x = S26_SchedOpen(0, 1);
S26_Sched2620_SetModePulseMeas(x, 12, 3, 0); // Set mode.
S26_SchedExecute(x, 1000, 0);

7.7.11 S26_Sched2620_SetModePwmGen()

Function: Schedules the programming of the operating mode of one counter channel on a model 2620 IOM.

Prototype: u32 S26_Sched2620_SetModePwmGen(XACT x, IOMPORT IomPort, u8 chan, u16 op);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 1.5 ms.

Notes: S26_Sched2620_SetModePwmGen() configures a counter channel so that it will toggle its output signal at periodic
intervals, with programmable period and duty cycle. This can be used to generate a continuous train of output
pulses in which both the pulse width and time gap between pulses is programmable.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The counter channel number that is to be accessed. Legal values range from 0 to 3.

ActLowX u16 Index pin polarity: 1 = active low, 0 = active high.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The counter channel number that is to be accessed. Legal values range from 0 to 3.

op u16 Output pin polarity: 1 = active low, 0 = active high.

Sensoray 2600 Programming Guide 52 Gateway Action Scheduling

Pulse width and gap times are determined by the values stored in the Preload registers. Preload1 specifies the
duration of the pulse, and Preload0 specifies the time interval between pulses. Preload values are related to time as
follows: value = 10 * t - 1, where t is specified in microseconds. For example, the value 99 corresponds to 10
microseconds.

The application should program the initial pulse width and gap times into the preload registers before calling this
function. After calling S26_Sched2620_SetModePwmGen(), the pulse width and/or gap times may be changed at
any time by programming new values into the associated preload registers.

Example: // Configure counter 3 for pwm generation on the 2620 at MM number 0, IOM port 12.
// Settings: active high output pin, 2KHz @ 2% duty cycle.
void *x = S26_SchedOpen(0, 1);
S26_Sched2620_SetPreload(x, 12, 3, 1, 99); // 10.0 us pulse width.
S26_Sched2620_SetPreload(x, 12, 3, 0, 4899); // 490.0 us gap time.
S26_Sched2620_SetModePwmGen(x, 12, 3, 0); // Set mode.
S26_SchedExecute(x, 1000, 0);

7.7.12 S26_Sched2620_SetMode()

Function: Schedules the programming of the operating mode of one counter channel on a model 2620 IOM.

Prototype: u32 S26_Sched2620_SetMode(XACT x, IOMPORT IomPort, u8 chan, u16 mode);

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The counter channel number that is to be accessed. Legal values range from 0 to 3.

mode u16 Value to be written to the mode register.

Sensoray 2600 Programming Guide 53 Gateway Action Scheduling

The mode value is a collection of bit flags:

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.9 ms.

Notes: This function may be used to establish any arbitrary operating mode for a counter channel. It is provided so that
applications can tailor the counter operating mode in cases where the other mode setting functions, such as
S26_Sched2620_SetModeFreqMeas(), do not provide sufficient control over counter operating parameters.

The new mode should be invoked by calling S26_Sched2620_SetMode() with the RUN flag negated so that the
counter will halt while the mode is being changed; this guarantees that the channel will be properly initialized
regardless of the physical state of its I/O pins. S26_Sched2620_SetMode() should then be called again with RUN
asserted to enable the counter channel to run in the new mode.

Example: // Set counter 3 operating mode to 0x0001 on the 2620 at MM number 0, IOM port 12.
void *x = S26_SchedOpen(0, 1);
S26_Sched2620_SetMode(x, 12, 3, 0x0001); // Halt channel and set mode.
S26_Sched2620_SetMode(x, 12, 3, 0x1001); // Run in the new mode.
S26_SchedExecute(x, 1000, 0);

15
RUN

14
OM1

13
OM0

12
XP

11
PL1

10
PL0

9
LAT

8
CET

7
OP

6
M2

5
M1

4
M0

3
CD1

2
CD0

1
PLM

0
XC

RUN: Enable channel operations.

0 - (default upon module reset) Halt channel, force core to
zero (including bit 32), force status bits to their default
states, reset trigger latches. Preload and latch registers
are not modified. After writing to the mode register
with this bit cleared, it is necessary to write to it again
with this bit set to start the channel running.

1 - Run or continue to run in the specified mode.

OM: Output pin’s mode (2-bit field):

0 - Counter bit 31.
1 - Counter bit 32 (toggles at zero counts).
2 - Active when counts are zero.
3 - Active during counter under/overflow.

XP: Index input polarity:

0 - Active high.
1 - Active low.

PL: Preload trigger (2-bit field):

0 - Preload on soft trigger only.
1 - Preload on index leading edge or soft trigger.
2 - Preload on zero counts reached or soft trigger.
3 - Reserved.

LAT: Latch trigger:

0 - Latch on soft trigger only.
1 - Latch on index leading edge or soft trigger.

CET: Count enable trigger:

0 - Enable upon configuration (no trig needed).
1 - Enable on index leading edge.

OP: Output pin’s polarity:

0 - Active high.
1 - Active low.

M: Mode (3-bit field). Modes 0-3 use quadrature-encoded
two-phase clock, modes 4-6 use single-phase clock, and
mode 7 uses the internal clock:

0 - quad x1, clock on rising A.
1 - quad x1, clock on falling A.
2 - quad x2, clock on either edge of A.
3 - quad x4, clock on either edge of A or B.
4 - mono, clock on rising A, B controls count direction.
5 - mono, clock on falling A, B controls count direction.
6 - mono, clock on either edge A, B controls count

direction.
7 - internal clock (10MHz), A is the gate (enables

counting while asserted), B controls count direction.

CD: Count disable trigger:

0 - Never disabled by any trigger.
1 - Disable on index trailing edge (if enabled).
2 - Disable when zero counts reached.

PLM: Select preload register:

0 - Only preload register 0.
1 - Use both preload registers.

XC: Index source:

0 - External Index pin.
1 - Internal free-running gate generator.

Sensoray 2600 Programming Guide 54 Gateway Action Scheduling

7.7.13 S26_Sched2620_SetPreload()

Function: Schedules the programming of a preload register for one counter channel on a model 2620 IOM.

Prototype: u32 S26_Sched2620_SetPreload(XACT x, IOMPORT IomPort, u8 chan, u8 reg, u32 value);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 1.1 ms.

Example: // Set counter 3’s preload0 reg to 0x0001 on the 2620 at MM number 0, IOM port 12.
void *x = S26_SchedOpen(0, 1);
S26_Sched2620_SetPreload(x, 12, 3, 0, 0x0001);
S26_SchedExecute(x, 1000, 0);

7.8 Model 2650 Relay IOM
The functions in this section are used to schedule IOM actions for Model 2650 8-channel Relay IOMs. These functions are
applicable only to Model 2650 IOMs. Any attempt to call these functions for other IOM types will result in a GWERR_IOMTYPE
transaction error. Note that these functions only schedule IOM actions into a transaction; they do not cause the actions to be
immediately executed.

7.8.1 Type-Specific Errors

In addition to the common IOM status bit flags (STATUS_RST and STATUS_CERR), this IOM type supports the following
type-specific flags. If any of these flags are asserted, a transaction error of type GWERR_IOMSPECIFIC will be generated:

7.8.2 S26_Sched2650_GetInputs()

Function: Schedules the fetching of the measured states of all eight relay coil drivers on a model 2650 IOM.

Prototype: u32 S26_Sched2650_GetInputs(XACT x, IOMPORT IomPort, u8 *states);

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The counter channel number that is to be accessed. Legal values range from 0 to 3.

reg u8 Selects the preload register that is to be written to: 0 or 1.

value u32 32-bit value to be written to the preload register.

Symbolic Name Description

STATUS_2650_DRVR One or more relay coil drivers failed to go to the commanded state. This may
be caused by a driver fault, a shorted relay coil or a serial data stream problem.
This flag can be cleared by invoking a ClearStatus action.

STATUS_2650_STRM An error was detected in the serial data stream that is used to control the relay
drivers and monitor driver states. This flag can be cleared by invoking a
ClearStatus action.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

states u8 * Pointer to a 1-byte application buffer that is to receive the measured states of the relay
drivers. Each bit is associated with one relay channel. For example, bit 7 is associated
with relay channel 7. Any bit set to one indicates the associated channel is set to the
active state; any bit set to zero indicates the channel is set to the inactive state.

Sensoray 2600 Programming Guide 55 Gateway Action Scheduling

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.8 ms.

Notes: Each relay channel includes a monitoring circuit that enables the on-board processor to determine the physical state
of the relay coil driver. This scheduled action will fetch the monitored physical state of each coil driver, even if the
relay is not present or its coil winding has opened.

Coil driver states are acquired periodically at two millisecond intervals. Consequently, states may not
accurately reflect the state of a coil driver that has changed its physical state within the last two milliseconds.

Example: // Get all relay driver coil states from the 2650 at MM number 0, IOM port 9.
u8 states;
void *x = S26_SchedOpen(0, 1);
S26_Sched2650_GetInputs(x, 9, &states);
S26_SchedExecute(x, 1000, 0);

7.8.3 S26_Sched2650_GetOutputs()

Function: Schedules the fetching of the programmed states of all eight relays on a model 2650 IOM.

Prototype: u32 S26_Sched2650_GetOutputs(XACT x, IOMPORT IomPort, u8 *states);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.8 ms.

Example: // Get all programmed relay driver states from the 2650 at MM number 0, IOM port 9.
u8 states;
void *x = S26_SchedOpen(0, 1);
S26_Sched2650_GetOutputs(x, 9, &states);
S26_SchedExecute(x, 1000, 0);

7.8.4 S26_Sched2650_SetOutputs()

Function: Schedules the programming of all eight relays on a model 2650 IOM.

Prototype: u32 S26_Sched2650_SetOutputs(XACT x, IOMPORT IomPort, u8 *states);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.8 ms.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

states u8 * Pointer to a 1-byte application buffer that is to receive the programmed states of the
relay drivers. Each bit is associated with one relay channel. For example, bit 7 is
associated with relay channel 7. Any bit set to one indicates the associated channel is
set to the active state; any bit set to zero indicates the channel is set to the inactive
state.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

states u8 * Pointer to a 1-byte application buffer that contains the desired states of the relay
drivers. Each bit is associated with one relay channel. For example, bit 7 is associated
with relay channel 7. Any bit set to one indicates the associated channel is set to the
active state; any bit set to zero indicates the channel is set to the inactive state.

Sensoray 2600 Programming Guide 56 Gateway Action Scheduling

Example: // Program all relay driver states on the 2650 at MM number 0, IOM port 9.
u8 states = 0x5A; // The desired relay states.
void *x = S26_SchedOpen(0, 1);
S26_Sched2650_SetOutputs(x, 9, &states);
S26_SchedExecute(x, 1000, 0);

7.9 Model 2652 Solid-State Relay IOM
The functions in this section are used to schedule IOM actions for Model 2652 8-channel Solid-State Relay IOMs. These functions
are applicable only to Model 2652 IOMs. Any attempt to call these functions for other IOM types will result in a GWERR_IOMTYPE
transaction error. Note that these functions only schedule IOM actions into a transaction; they do not cause the actions to be
immediately executed.

7.9.1 Type-Specific Errors

In addition to the common IOM status bit flags (STATUS_RST and STATUS_CERR), this IOM type supports the following
type-specific flags. If any of these flags are asserted, a transaction error of type GWERR_IOMSPECIFIC will be generated:

7.9.2 S26_Sched2652_GetInputs()

Function: Schedules the fetching of the physical states of all eight SSR channels on a model 2652 IOM.

Prototype: u32 S26_Sched2652_GetInputs(XACT x, IOMPORT IomPort, u8 *states);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.8 ms.

Notes: Each SSR channel includes a monitoring circuit that enables the on-board processor to determine the physical state
of the channel. This scheduled action will fetch the monitored physical state of each channel, no matter whether
the channel is driven by its own output driver or by an external signal through an input SSR.

Physical states are sampled periodically at two millisecond intervals and passed through a 10 millisecond debounce
filter. Consequently, states may not accurately reflect the state of a channel that has changed its physical state
within the last twelve milliseconds.

Example: // Get all physical SSR states from the 2652 at MM number 0, IOM port 9.
u8 states;
void *x = S26_SchedOpen(0, 1);
S26_Sched2652_GetInputs(x, 9, &states);
S26_SchedExecute(x, 1000, 0);

7.9.3 S26_Sched2652_GetModes()

Function: Schedules the fetching of the operating modes for all SSR channels on a model 2652 IOM.

Symbolic Name Description

STATUS_2652_STRM An error was detected in the serial data stream that is used to control the SSR
output drivers. This flag can be cleared by invoking a ClearStatus action.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

states u8 * Pointer to a 1-byte application buffer that is to receive the physical states of the SSR
channels. Each bit is associated with one channel. For example, bit 7 is associated
with channel 7. Any bit set to one indicates the associated channel is in the active
state; any bit set to zero indicates the channel is in the inactive state.

Sensoray 2600 Programming Guide 57 Gateway Action Scheduling

Prototype: u32 S26_Sched2652_GetModes(XACT x, IOMPORT IomPort, u8 *modes);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.8 ms.

Example: // Get all SSR channel operating modes from the 2652 at MM number 0, IOM port 2.
u8 modes;
void *x = S26_SchedOpen(0, 1);
S26_Sched2652_GetModes(x, 2, &modes);
S26_SchedExecute(x, 1000, 0);

7.9.4 S26_Sched2652_GetOutputs()

Function: Schedules the fetching of the programmed states of all eight SSR drivers on a model 2652 IOM.

Prototype: u32 S26_Sched2652_GetOutputs(XACT x, IOMPORT IomPort, u8 *states);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.8 ms.

Example: // Get all programmed SSR driver states from the 2652 at MM number 0, IOM port 9.
u8 states;
void *x = S26_SchedOpen(0, 1);
S26_Sched2652_GetOutputs(x, 9, &states);
S26_SchedExecute(x, 1000, 0);

7.9.5 S26_Sched2652_GetPwmRatio()

Function: Schedules the fetching of the PWM ratio for one SSR channel from a model 2652 IOM.

Prototype: u32 S26_Sched2652_GetPwmRatio(XACT x, IOMPORT IomPort, u8 chan, u8 *OnTime, u8 *OffTime);

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

modes u8 * Pointer to a 1-byte application buffer that is to receive the channel mode info. The
byte indicates the operating modes for SSR channels 0 to 7. Each bit is associated
with a channel number. For example, bit 4 is associated with channel 4. A bit is set to
one when operating in the PWM mode, or to zero in the Standard mode.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

states u8 * Pointer to a 1-byte application buffer that is to receive the programmed states of the
SSR output drivers. Each bit is associated with one SSR channel. For example, bit 7
is associated with channel 7. Any bit set to one indicates the associated channel is
programmed to the active state; any bit set to zero indicates the channel is programmed
to the inactive state.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

Sensoray 2600 Programming Guide 58 Gateway Action Scheduling

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.9 ms.

Example: // Fetch the PWM ratio for SSR channel 5 on the 2652 at MM number 0, IOM port 2.
u8 ontime;
u8 offtime;
void *x = S26_SchedOpen(0, 1);
S26_Sched2652_GetPwmRatio(x, 2, 5, &ontime, &offtime);
S26_SchedExecute(x, 1000, 0);

7.9.6 S26_Sched2652_SetModes()

Function: Schedules the programming of the operating modes for all SSR channels on a model 2652 IOM.

Prototype: u32 S26_Sched2652_SetModes(XACT x, IOMPORT IomPort, u8 *modes);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.8 ms.

Example: // Set all SSR channel operating modes on the 2652 at MM number 0, IOM port 2.
// Channels 0 to 5: Standard mode, channels 6 and 7: PWM mode.
u8 modes = 0xC0;
void *x = S26_SchedOpen(0, 1);
S26_Sched2652_SetModes(x, 2, &modes);
S26_SchedExecute(x, 1000, 0);

7.9.7 S26_Sched2652_SetOutputs()

Function: Schedules the programming of all eight SSR output drivers on a model 2652 IOM.

Prototype: u32 S26_Sched2652_SetOutputs(XACT x, IOMPORT IomPort, u8 *states);

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The SSR channel number that is to be queried. Legal values range from 0 to 7.

OnTime u8 * Pointer to a 1-byte application buffer that is to receive the programmed PWM on time
expressed in 2 msec increments.

OffTime u8 * Pointer to a 1-byte application buffer that is to receive the programmed PWM off time
expressed in 2 msec increments.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

modes u8 * Pointer to a 1-byte application buffer that contains the channel mode flags. The byte
indicates the operating modes for SSR channels 0 to 7. Each bit is associated with a
channel number. For example, bit 4 is associated with channel 4. Set a bit to one to
operate in the PWM mode, or to zero to operate in the Standard mode.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

states u8 * Pointer to a 1-byte application buffer that contains the desired states of the SSR output
drivers. Each bit is associated with one SSR channel. For example, bit 7 is associated
with channel 7. Any bit set to one indicates the associated channel is to be set to the
active state; zero indicates the channel is to be set to the inactive state.

Parameter Type Description

Sensoray 2600 Programming Guide 59 Gateway Action Scheduling

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.8 ms.

Example: // Program all SSR driver states on the 2652 at MM number 0, IOM port 9.
u8 states = 0x5A; // The desired relay states.
void *x = S26_SchedOpen(0, 1);
S26_Sched2652_SetOutputs(x, 9, &states);
S26_SchedExecute(x, 1000, 0);

7.9.8 S26_Sched2652_SetPwmRatio()

Function: Schedules the programming of the PWM ratio for one SSR channel on a model 2652 IOM.

Prototype: u32 S26_Sched2652_SetPwmRatio(XACT x, IOMPORT IomPort, u8 chan, u8 OnTime, u8 OffTime);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.9 ms.

Example: // Set the PWM ratio for SSR channel 5 on the 2652 at MM number 0, IOM port 2.
// PWM ratio = on for 20 msec, off for 30 msec.
void *x = S26_SchedOpen(0, 1);
S26_Sched2652_SetPwmRatio(x, 2, 5, 10, 15);
S26_SchedExecute(x, 1000, 0);

7.10 Model 2653 Solid-State Relay IOM
The functions in this section are used to schedule IOM actions for Model 2653 16-channel Solid-State Relay IOMs. These
functions are applicable only to Model 2653 IOMs. Any attempt to call these functions for other IOM types will result in a
GWERR_IOMTYPE transaction error. Note that these functions only schedule IOM actions into a transaction; they do not cause the
actions to be immediately executed.

7.10.1 Type-Specific Errors

In addition to the common IOM status bit flags (STATUS_RST and STATUS_CERR), this IOM type supports the following
type-specific flags. If any of these flags are asserted, a transaction error of type GWERR_IOMSPECIFIC will be generated:

7.10.2 S26_Sched2653_GetInputs()

Function: Schedules the fetching of the physical states of all SSR channels on a model 2653 IOM.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The SSR channel number that is to be programmed. Legal values range from 0 to 7.

OnTime u8 PWM on time, expressed in 2 msec increments, to be programmed.

OffTime u8 PWM off time, expressed in 2 msec increments, to be programmed.

Symbolic Name Description

STATUS_2653_STRM An error was detected in the serial data stream that is used to control the SSR
output drivers. This flag can be cleared by invoking a ClearStatus action.

Sensoray 2600 Programming Guide 60 Gateway Action Scheduling

Prototype: u32 S26_Sched2653_GetInputs(XACT x, IOMPORT IomPort, u8 *states);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.9 ms.

Notes: Each SSR channel includes a monitoring circuit that enables the on-board processor to determine the physical state
of the channel. This scheduled action will fetch the monitored physical state of each channel, no matter whether
the channel is driven by its own output driver or by an external signal through an input SSR.

Physical states are sampled periodically at two millisecond intervals and passed through a 10 millisecond debounce
filter. Consequently, states may not accurately reflect the state of a channel that has changed its physical state
within the last twelve milliseconds.

Example: // Get all physical SSR states from the 2653 at MM number 0, IOM port 9.
u8 states[2];
void *x = S26_SchedOpen(0, 1);
S26_Sched2653_GetInputs(x, 9, states);
S26_SchedExecute(x, 1000, 0);

7.10.3 S26_Sched2653_GetModes()

Function: Schedules the fetching of the operating modes for all SSR channels on a model 2653 IOM.

Prototype: u32 S26_Sched2653_GetModes(XACT x, IOMPORT IomPort, u8 *modes);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.9 ms.

Example: // Get all SSR channel operating modes from the 2653 at MM number 0, IOM port 2.
u8 modes[2];
void *x = S26_SchedOpen(0, 1);
S26_Sched2653_GetModes(x, 2, modes);
S26_SchedExecute(x, 1000, 0);

7.10.4 S26_Sched2653_GetOutputs()

Function: Schedules the fetching of the programmed states of all SSR drivers on a model 2653 IOM.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

states u8 * Pointer to a 2-byte application buffer that is to receive the physical states of the SSR
channels. The first byte corresponds to channels 0 (lsb) to 7 (msb), and the second
byte to channels 8 (lsb) to 15 (msb). A logic one indicates the channel is in its active
state; logic zero indicates the inactive state.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

modes u8 * Pointer to a 2-byte application buffer that is to receive the SSR channel mode info.
The first byte corresponds to channels 0 (lsb) to 7 (msb), and the second byte to
channels 8 (lsb) to 15 (msb). A logic one indicates the channel is operating in PWM
mode; logic zero indicates Standard mode.

Sensoray 2600 Programming Guide 61 Gateway Action Scheduling

Prototype: u32 S26_Sched2653_GetOutputs(XACT x, IOMPORT IomPort, u8 *states);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.9 ms.

Example: // Get all programmed SSR driver states from the 2653 at MM number 0, IOM port 9.
u8 states[2];
void *x = S26_SchedOpen(0, 1);
S26_Sched2653_GetOutputs(x, 9, states);
S26_SchedExecute(x, 1000, 0);

7.10.5 S26_Sched2653_GetPwmRatio()

Function: Schedules the fetching of the PWM ratio for one SSR channel on a model 2653 IOM.

Prototype: u32 S26_Sched2653_GetPwmRatio(XACT x, IOMPORT IomPort, u8 chan, u8 *OnTime, u8 *OffTime);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.9 ms.

Example: // Fetch the PWM ratio for SSR channel 5 on the 2653 at MM number 0, IOM port 2.
u8 ontime;
u8 offtime;
void *x = S26_SchedOpen(0, 1);
S26_Sched2653_GetPwmRatio(x, 2, 5, &ontime, &offtime);
S26_SchedExecute(x, 1000, 0);

7.10.6 S26_Sched2653_SetModes()

Function: Schedules the programming of the operating modes for all SSR channels on a model 2653 IOM.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

states u8 * Pointer to a 2-byte application buffer that is to receive the programmed states of the
SSR output drivers. The first byte corresponds to channels 0 (lsb) to 7 (msb), and the
second byte to channels 8 (lsb) to 15 (msb). Any bit set to one indicates the associated
channel is programmed to the active state; zero indicates the inactive state.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The SSR channel number that is to be queried. Legal values range from 0 to 7.

OnTime u8 * Pointer to a 1-byte application buffer that is to receive the programmed PWM on time
expressed in 2 msec increments.

OffTime u8 * Pointer to a 1-byte application buffer that is to receive the programmed PWM off time
expressed in 2 msec increments.

Sensoray 2600 Programming Guide 62 Gateway Action Scheduling

Prototype: u32 S26_Sched2653_SetModes(XACT x, IOMPORT IomPort, u8 *modes);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.9 ms.

Example: // Set all SSR channel operating modes on the 2653 at MM number 0, IOM port 2.
// Channels 6 and 7: PWM mode; all other channels: Standard mode.
u8 modes[] = { 0x00, 0xC0 };
void *x = S26_SchedOpen(0, 1);
S26_Sched2653_SetModes(x, 2, modes);
S26_SchedExecute(x, 1000, 0);

7.10.7 S26_Sched2653_SetOutputs()

Function: Schedules the programming of all SSR output drivers on a model 2653 IOM.

Prototype: u32 S26_Sched2653_SetOutputs(XACT x, IOMPORT IomPort, u8 *states);

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.9 ms.

Example: // Program all SSR driver states on the 2653 at MM number 0, IOM port 9.
u8 states[] = {0x12, 0x5A }; // The desired relay states.
void *x = S26_SchedOpen(0, 1);
S26_Sched2653_SetOutputs(x, 9, states);
S26_SchedExecute(x, 1000, 0);

7.10.8 S26_Sched2653_SetPwmRatio()

Function: Schedules the programming of the PWM ratio for one SSR channel on a model 2653 IOM.

Prototype: u32 S26_Sched2653_SetPwmRatio(XACT x, IOMPORT IomPort, u8 chan, u8 OnTime, u8 OffTime);

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

modes u8 * Pointer to a 2-byte application buffer that contains the channel mode flags. The first
byte corresponds to channels 0 (lsb) to 7 (msb), and the second byte to channels 8 (lsb)
to 15 (msb). Set a bit to one to operate in the PWM mode, or to zero to operate in the
Standard mode.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

states u8 * Pointer to a 2-byte application buffer that contains the desired states of the SSR output
drivers. The first byte corresponds to channels 0 (lsb) to 7 (msb), and the second byte
to channels 8 (lsb) to 15 (msb). Logic one indicates the associated channel is to be set
to the active state; zero indicates the channel is to be set to the inactive state.

Parameter Type Description

x void * Transaction handle obtained from S26_SchedOpen().

IomPort u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The SSR channel number that is to be programmed. Legal values range from 0 to 7.

OnTime u8 PWM on time, expressed in 2 msec increments, to be programmed.

OffTime u8 PWM off time, expressed in 2 msec increments, to be programmed.

Sensoray 2600 Programming Guide 63 Gateway Action Scheduling

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.9 ms.

Example: // Set the PWM ratio for SSR channel 5 on the 2653 at MM number 0, IOM port 2.
// PWM ratio = on for 20 msec, off for 30 msec.
void *x = S26_SchedOpen(0, 1);
S26_Sched2653_SetPwmRatio(x, 2, 5, 10, 15);
S26_SchedExecute(x, 1000, 0);

Sensoray 2600 Programming Guide 64 Comport Transaction Functions

Chapter 8: Comport Transaction Functions

8.1 Overview
This section describes the middleware functions that are used to configure and operate the MM’s asynchronous serial
communication ports. All of the programming examples reference constants that are defined in the header file App2600.h.

8.1.1 Return Values

All comport functions return a u32 value consisting of a three-byte error code and a status byte. The comport error types are a
subset of the transaction error types described in section 5.5. The error code occupies the most significant three bytes of the
returned value, and the status byte resides in the least significant byte. Zero is returned for the error type if the comport transaction
was successful. The returned status byte, which is valid only if the error code is zero, contains a set of active-high bit flags:

All comport status flags are passed through to the application exactly as they are received in the MM’s response packet.

8.2 Configuration

8.2.1 S26_ComSetMode()

Function: Sets the operating mode for a comport.

Bit Description

COM_REJECTED A comport command was rejected by the MM. This flag has various meanings, depending on the
command that was executed. This is automatically reset at the beginning of each command.

COM_ISOPEN The comport is open (i.e., transmit and receive operations are enabled). This is set by S26_ComOpen()
and reset by S26_ComClose().

COM_FRAMINGERROR The UART detected a framing error on a received character. This may be reset by calling
S26_ComClearFlags() or S26_ComFlush().

COM_PARITYERROR The UART detected a parity error on a received character. This may be reset by calling
S26_ComClearFlags() or S26_ComFlush().

COM_OVERFLOWERROR This indicates one of two conditions:

1. The UART receiver overflowed. This may be reset by calling S26_ComClearFlags() or
S26_ComFlush().

2. The receiver’s ring buffer overflowed, or the UART receiver overflowed. To avoid this error, be sure
to remove received data from the receiver buffer before it becomes full. This may be reset by calling
S26_ComClearFlags() or S26_ComFlush().

Sensoray 2600 Programming Guide 65 Comport Transaction Functions

Prototype: u32 S26_ComSetMode(u32 hbd,u8 dev,u16 cdiv,u8 mode,u8 leds,u32 msec,u32 retries);

Parameter Type Description

hbd u32 MM handle.

dev u8 Logical device identifier for the target comport. Specify a value from 1 to 4 to
address comport 1 to 4, respectively.

cdiv u16 Clock divisor for the baud rate generator. May be set to any value between
SIO_BR_300 and SIO_BR_115200.

mode u8 Collection of enumerated values that set various operating attributes. The byte value
is formed by logically or’ing one value from each of the following groups:

Parity: SIO_PARITY_ODD, SIO_PARITY_EVEN, or SIO_PARITY_NONE.

Databits: from SIO_DATABITS_5 to SIO_DATABITS_8.

Stopbits: SIO_STOPBITS_1 or SIO_STOPBITS_2.

Flow control: SIO_FLOWCTRL_OFF or SIO_FLOWCTRL_ON.

Interface type: SIO_PHY_RS232, SIO_PHY_RS422_IDLEON,
SIO_PHY_RS485 or SIO_PHY_RS422_IDLEOFF.

leds u8 Specifies the events that will cause the comport status LED to light. May be any
combination of the following: SIO_LED_TRANSMIT, SIO_LED_RECEIVE,
SIO_LED_ERROR. The byte value is formed by logically or’ing the desired events.

msec u32 Maximum time, in milliseconds, to wait for the MM to respond.

retries u32 Maximum number of transaction retry attempts.

cdiv may be set to any of the following values in order to
program standard baud rates. Bold type indicates the default
setting after a module reset. Setting cdiv to any value not
shown in the table will result in a non-standard baud rate.

The mode byte is shown below. Bold type indicates the
default settings after a module reset.

Baud Rate cdiv[0]
300 0x0300
600 0x0180
1200 0x00C0
2400 0x0060
4800 0x0030
9600 0x0018
19.2K 0x000C
38.4K 0x0006
57.6K 0x0004
115.2K 0x0002

FLOW PAR0 STOP DAT1 DAT0PAR1

00 = 5 bits
Char Size

01 = 6 bits
10 = 7 bits
11 = 8 bits

X0 = None
Parity

01 = Odd
11 = Even

0 = 1 bit
Stop Bit Length (in bit times)

1 = 1.5 bits (char size 5)
1 = 2 bits (char sizes 6,7,8)

Enable XON/XOFF

00 = RS232
Physical Layer

01 = RS422, Tx always on

Flow Control

PHY1 PHY0

10 = RS4xx, half-duplex
11 = RS4xx, idle 3-state

Sensoray 2600 Programming Guide 66 Comport Transaction Functions

Returns: Error/status value, as described in section 8.1.1.

Notes: Following a MM reset, S26_ComSetMode() should be called to configure each comport that will be used. A
comport must be configured before opening it or attempting to send data to or receive data from its remote serial
device.

The target comport must be closed when S26_ComSetMode() is called. If the comport is open, the command will
be rejected and the status byte’s COM_REJECTED flag will be set.

Example: // Configure COM1 on MM number 0 for the following operating mode:
// 9600 baud, no parity, 8 data, one stop, no flow control, light LED upon receive.
u32 errstat = S26_ComSetMode(0,
 LOGDEV_COM1,
 SIO_BR_9600,
 SIO_PHY_RS232 | SIO_PARITY_NONE | SIO_DATA_8 | SIO_STOP_1 | SIO_FLOW_OFF,
 SIO_LED_RECEIVE,
 1000,
 1);
if (errstat & GWERRMASK)
 printf("COM1 error detected.\n");
else if (errstat & COM_REJECTED)
 printf("Error: cannot set mode while COM1 is open.\n");
else
 printf("Successfully configured COM1.\n");

8.2.2 S26_ComSetBreakChar()

Function: Specifies the Break character for a comport.

Prototype: u32 S26_ComSetBreakChar(u32 hbd, u8 dev, u8 BreakChar, u32 msec, u32 retries);

Returns: Error/status value, as described in section 8.1.1.

Notes: Following a MM reset, S26_ComSetBreakChar() may be called for each comport to specify the port’s break
character. The break character will be automatically inserted into the comport’s receive buffer in the event a break

Parameter Type Description

hbd u32 MM handle.

dev u8 Logical device identifier for the target comport. Specify a value from 1 to 4 to
address comport 1 to 4, respectively.

BreakChar u8 Specifies the character that is to be inserted into the receive buffer upon detection of
an incoming break condition. The default break character is 0x00 upon power-up or
reset of the MM.

msec u32 Maximum time, in milliseconds, to wait for the MM to respond.

retries u32 Maximum number of transaction retry attempts.

The leds byte is shown to the right.

When set to logic one, each bit will cause the comport’s status
LED to light for approximately 100 milliseconds in response
to the associated event.

Any combination of these bits may be specified. For
example, the XMT and RCV bits may both be set, in which case
the LED will light when characters are sent or received at the
comport.

After a module reset, the RCV flag is set and all other flags are
reset to zero.

XMT causes the LED to light when a character is transmitted.

RCV causes the LED to light when a character is received.

ERR causes the LED to light when a receiver break condition
is detected or when an error (framing, overrun or parity) is
detected.

7

0

6

0

5 4

0

3

XMT

2 1 0

RCV ERR 00

Sensoray 2600 Programming Guide 67 Comport Transaction Functions

condition is detected on the comport’s receive line. The break character may be set to a “printable” character, such
as a carriage return character, to provide a “visual” indication that a break was detected.

Break conditions are sometimes employed as message delimiters. For example, a hand-held barcode scanner may
assert a break when its trigger is squeezed, and again when the trigger is released. The resulting break characters
will then serve as delimiters for the barcode data.

The target comport may be either open or closed when this function is called.

Example: // Configure COM1 on MM number 0 to use a carriage return as its break character.
u32 errstat = S26_ComSetBreakChar(0, LOGDEV_COM1, 13, 1000, 1);
if (errstat & GWERRMASK)
 printf("COM1 error detected.\n");
else
 printf("Successfully set COM1 break char.\n");

8.2.3 S26_ComOpen()

Function: Enable transmit and receive operations on a comport.

Prototype: u32 S26_ComOpen(HMM hbd, u8 LogDev, u32 msec, u32 retries);

Returns: Error/status value, as described in section 8.1.1.

Notes: By default, all comports are closed after a MM reset. S26_ComOpen() must be called to enable each comport that
will be used. A comport must be enabled before attempting to send data to or receive data from the its remote serial
device. Before calling S26_ComOpen(), the application should call S26_ComSetMode() to configure the comport.

The target comport must be closed when this function is called. If the comport is already open when this command
is issued, the command will be rejected and the status byte’s COM_REJECTED flag will be set.

The COM_ISOPEN flag will be asserted in the returned status byte if this function executes successfully.

Example: // Open COM1 on MM number 0.
u32 errstat = S26_ComOpen(0, 1, 1000, 1);
if (errstat & GWERRMASK)
 printf("COM1 communication problem detected.\n");
else if (errstat & COM_REJECTED)
 printf("COM1 already open.\n");
else
 printf("COM1 is %s.\n", (status & COM_ISOPEN) ? "open" : "closed");

8.2.4 S26_ComClose()

Function: Disable transmit and receive operations on a comport.

Parameter Type Description

hbd u32 MM handle.

LogDev u8 Logical device identifier for the target comport. Specify a value from 1 to 4 to
address comport 1 to 4, respectively.

msec u32 Maximum time, in milliseconds, to wait for the MM to respond.

retries u32 Maximum number of transaction retry attempts.

Sensoray 2600 Programming Guide 68 Comport Transaction Functions

Prototype: u32 S26_ComClose(HMM hbd, u8 LogDev, u32 msec, u32 retries);

Returns: Error/status value, as described in section 8.1.1.

Notes: This function flushes the target comport’s serial transmitter and receiver queues. Any character transmission that is
in progress is completed.

The target comport must be open when this function is called. If the comport is closed when this command is
issued, the command will be rejected and the status byte’s COM_REJECTED flag will be set.

The COM_ISOPEN flag will be negated in the returned status byte if this function executes successfully.

Example: // Close COM1 on MM number 0 and flush all transmit and receive buffers.
u32 errstat = S26_ComClose(0, 1, 1000, 1);
if (errstat & (GWERRMASK | COM_REJECTED))
 printf("COM1 communication problem detected.\n");
else if (errstat & COM_REJECTED)
 printf("COM1 already closed.\n");
else
 printf("COM1 is %s.\n", (status & COM_ISOPEN) ? "open" : "closed");

8.3 Communication

8.3.1 S26_ComSend()

Function: Sends data bytes to a comport.

Prototype: u32 S26_ComSend(u32 hbd, u8 LogDev, char *MsgBuf, u16 MsgLen, u32 msec, u32 retries);

Returns: Error/status value, as described in section 8.1.1.

Notes: This function transfers data bytes to the target comport’s transmitter queue. The comport transmitter queue is a
FIFO queue, so any bytes that are already pending in the queue will be transmitted before the new bytes are
transmitted.

If the transmitter queue would overflow as a result of adding the new data bytes to it, all of the data bytes in the
comport command packet will be discarded and the status byte’s COM_REJECTED flag will be set.

The target comport must be open when this function is called. If the comport is closed, the command will be
rejected and the status byte’s COM_REJECTED flag will be set.

Parameter Type Description

hbd u32 MM handle.

LogDev u8 Logical device identifier for the target comport. Specify a value from 1 to 4 to
address comport 1 to 4, respectively.

msec u32 Maximum time, in milliseconds, to wait for the MM to respond.

retries u32 Maximum number of transaction retry attempts.

Parameter Type Description

hbd u32 MM handle.

LogDev u8 Logical device identifier for the target comport. Specify a value from 1 to 4 to
address comport 1 to 4, respectively.

MsgBuf char* Address of a buffer that contains the data bytes to be sent to the target comport.

MsgLen u16 Number of bytes in MsgBuf[] that are to be sent to the target comport.

msec u32 Maximum time, in milliseconds, to wait for the MM to respond.

retries u32 Maximum number of transaction retry attempts.

Sensoray 2600 Programming Guide 69 Comport Transaction Functions

Example: // Send an ASCII string to COM1 on MM number 0. Note that the message size
// is reduced by 1 because we don’t want to transmit the null stored at the
// end of the string.
char Msg[] = "This is a test.";
u32 errstat = S26_ComSend(0, 1, Msg, sizeof(Msg) - 1, 1000, 1);
if (errstat & GWERRMASK)
 printf("COM1 error detected.\n");
else if (errstat & COM_REJECTED)
 printf("insufficient COM1 buffer space.\n");
else
 printf("Sent string to COM1.\n");

Example: // Send a binary string to COM1 on MM number 0.
char Msg[] = { 1, 2, 3, 4, 5 };
u32 errstat = S26_ComSend(0, 1, Msg, sizeof(Msg), 1000, 1);
if (errstat & GWERRMASK)
 printf("COM1 error detected.\n");
else if (errstat & COM_REJECTED)
 printf("insufficient COM1 buffer space.\n");
else
 printf("Sent string to COM1.\n");

8.3.2 S26_ComReceive()

Function: Returns data bytes from a comport’s serial receiver queue.

Prototype: u32 S26_ComReceive(u32 hbd, u8 LogDev, char *MsgBuf, u16 *MsgLen, u32 msec,u32 retries);

Returns: Error/status value, as described in section 8.1.1.

Notes: This function transfers bytes from the comport’s serial receiver queue into MsgBuf[]. If no bytes are present in the
queue, the byte count value at *MsgLen will be set to zero, otherwise the number of bytes that were transferred into
MsgBuf[] will be indicated by *MsgLen.

The target comport must be open when this function is called. If the comport is closed, the command will be
rejected and the status byte’s COM_REJECTED flag will be set.

Example: // Fetch and display an ASCII string from COM1 on MM number 0.
char RcvBuf[256]; // Buffer that will receive the string.
u16 BufLen = sizeof(RcvBuf); // Max number of characters to receive.
u32 errstat = S26_ComReceive(0, 1, RcvBuf, &BufLen, 1000, 1);
if (errstat & GWERRMASK)
 printf("COM1 error detected.\n");
else
{

Parameter Type Description

hbd u32 MM handle.

LogDev u8 Logical device identifier for the target comport. Specify a value from 1 to 4 to
address comport 1 to 4, respectively.

MsgBuf char* Address of a buffer that is to receive the data bytes from the target comport.

MsgLen u16* Address of a 16-bit application buffer that contains a byte count. Before calling this
function, set the byte count to the maximum number of bytes that are to be
transferred from the comport into MsgBuf[]. The function will transfer this
number of bytes, or all of the unread bytes in the serial receiver queue, whichever is
less. When the function returns, the byte count will be set to the number of bytes
that were transferred into MsgBuf[].

msec u32 Maximum time, in milliseconds, to wait for the MM to respond.

retries u32 Maximum number of transaction retry attempts.

Sensoray 2600 Programming Guide 70 Comport Transaction Functions

 RcvBuf[BufLen] = 0; // Append null to end of string.
 printf("%s\n", RcvBuf); // Display the string.
}

8.3.3 S26_ComGetRxCount()

Function: Returns a comport’s receive buffer character count.

Prototype: u32 S26_ComGetRxCount(u32 hbd, u8 LogDev, u16 *CharCount, u32 msec, u32 retries);

Returns: Error/status value, as described in section 8.1.1.

Notes: S26_ComGetRxCount() returns the number of pending received characters (i.e., receive characters that have not
yet been retrieved by an Ethernet client) remaining in a comport’s receive ring buffer.

Example: // Determine the number of characters pending in MM number 0, COM1 receive buffer.
u16 RxCount;
u32 errstat = S26_ComGetRxCount(0, 1, &RxCount, 1000, 1);
if (errstat & GWERRMASK)
 printf("COM1 error detected.\n");
else if (errstat & COM_REJECTED)
 printf("COM1 is not open.\n");
else
 printf("There are %d characters in the Rx buffer.\n", RxCount);

8.3.4 S26_ComGetTxCount()

Function: Returns a comport’s transmit buffer character count.

Prototype: u32 S26_ComGetTxCount(u32 hbd, u8 LogDev, u16 *CharCount, u32 msec, u32 retries);

Returns: Error/status value, as described in section 8.1.1.

Notes: S26_ComGetTxCount() returns the number of characters remaining in a comport’s transmit ring buffer that have
not yet been transmitted onto the serial interface. This can be useful if you must determine whether all characters
have been sent to a remote serial device, or if you need to find out if there is enough space in the transmit buffer for
new characters.

Example: // Determine the number of characters remaining in MM number 0, COM1 transmit buffer.
u16 TxCount;
u32 errstat = S26_ComGetTxCount(0, 1, &TxCount, 1000, 1);

Parameter Type Description

hbd u32 MM handle.

LogDev u8 Logical device identifier for the target comport. Specify a value from 1 to 4 to
address comport 1 to 4, respectively.

CharCount u16 Address of a 16-bit application buffer that will receive the character count.

msec u32 Maximum time, in milliseconds, to wait for the MM to respond.

retries u32 Maximum number of transaction retry attempts.

Parameter Type Description

hbd u32 MM handle.

LogDev u8 Logical device identifier for the target comport. Specify a value from 1 to 4 to
address comport 1 to 4, respectively.

CharCount u16 Address of a 16-bit application buffer that will receive the character count.

msec u32 Maximum time, in milliseconds, to wait for the MM to respond.

retries u32 Maximum number of transaction retry attempts.

Sensoray 2600 Programming Guide 71 Comport Transaction Functions

if (errstat & GWERRMASK)
 printf("COM1 error detected.\n");
else if (errstat & COM_REJECTED)
 printf("COM1 is not open.\n");
else
 printf("There are %d characters in the Tx buffer.\n", TxCount);

8.4 Control

8.4.1 S26_ComStartBreak()

Function: Initiates a break transmission on a comport.

Prototype: u32 S26_ComStartBreak(u32 hbd, u8 LogDev, u32 msec, u32 retries);

Returns: Error/status value, as described in section 8.1.1.

Notes: S26_ComStartBreak() is used to initiate a break transmission on a comport. The break condition will continue
until S26_ComEndBreak() is called or the MM is reset.

The target comport must be open when this function is called. If the comport is already closed when this command
is issued, the command will be rejected and the status byte’s COM_REJECTED flag will be set.

Example: See the example in section 8.4.2.

8.4.2 S26_ComEndBreak()

Function: Terminates a break transmission on a comport.

Prototype: u32 S26_ComEndBreak(u32 hbd, u8 LogDev, u32 msec, u32 retries);

Returns: Error/status value, as described in section 8.1.1.

Notes: S26_ComEndBreak() is used to terminate a break transmission that was started by calling the
S26_ComStartBreak() function.

The target comport must be open when this function is called. If the comport is already closed when this command
is issued, the command will be rejected and the status byte’s COM_REJECTED flag will be set.

Example: // For a duration of 250 milliseconds, transmit a break on MM number 0, COM1.
// Error detection is omitted here for clarity.
S26_ComStartBreak(0, 1, 1000, 1);
Sleep(250);
S26_ComEndBreak(0, 1, 1000, 1);

Parameter Type Description

hbd u32 MM handle.

LogDev u8 Logical device identifier for the target comport. Specify a value from 1 to 4 to
address comport 1 to 4, respectively.

msec u32 Maximum time, in milliseconds, to wait for the MM to respond.

retries u32 Maximum number of transaction retry attempts.

Parameter Type Description

hbd u32 MM handle.

LogDev u8 Logical device identifier for the target comport. Specify a value from 1 to 4 to
address comport 1 to 4, respectively.

msec u32 Maximum time, in milliseconds, to wait for the MM to respond.

retries u32 Maximum number of transaction retry attempts.

Sensoray 2600 Programming Guide 72 Comport Transaction Functions

8.4.3 S26_ComClearFlags()

Function: Resets all error flags belonging to a comport.

Prototype: u32 S26_ComClearFlags(u32 hbd, u8 LogDev, u32 msec, u32 retries);

Returns: Error/status value, as described in section 8.1.1.

Notes: If this function executes successfully, the COM_FRAMINGERROR, COM_PARITYERROR and COM_OVERFLOWERROR
flags will be reset to zero on the target comport. This will be reflected in the returned status byte as well.

Example: // Reset all COM1 error flags on MM number 0.
// For clarity, error detection is not shown here.
S26_ComClearFlags(0, 1, 1000, 1);

8.4.4 S26_ComFlush()

Function: Flushes a comport’s receiver buffer and resets its error flags.

Prototype: u32 S26_ComFlush(u32 hbd, u8 LogDev, u32 msec, u32 retries);

Returns: Error/status value, as described in section 8.1.1.

Notes: S26_ComFlush() may be used to “reset” the receiver buffer to compensate for a detected error on a received
character from the remote serial device; this has the effect of resynchronizing the Ethernet client to the remote
serial device.

This function should be called, for example, if a parity, framing or overrun error is detected on a received character.
When a receive error occurs, the entire contents of the receiver buffer must be considered corrupt and the receiver
buffer should accordingly be dumped in preparation for a communication retry to the remote serial device.

The target comport must be open when this function is called. If the comport is already closed when this command
is issued, the command will be rejected and the status byte’s COM_REJECTED flag will be set.

Example: // Fetch and display an ASCII string from COM1 on MM number 0.

char RcvBuf[256]; // Buffer that will receive the string.
u16 BufLen = sizeof(RcvBuf); // Max number of characters to receive.

u32 errstat = S26_ComReceive(0, 1, RcvBuf, &BufLen, 1000, 1);
if (errstat & GWERRMASK)
 printf("COM1 error detected.\n");
else if (errstat & (COM_PARITYERROR | COM_OVERFLOWERROR | COM_FRAMINGERROR))
{

Parameter Type Description

hbd u32 MM handle.

LogDev u8 Logical device identifier for the target comport. Specify a value from 1 to 4 to
address comport 1 to 4, respectively.

msec u32 Maximum time, in milliseconds, to wait for the MM to respond.

retries u32 Maximum number of transaction retry attempts.

Parameter Type Description

hbd u32 MM handle.

LogDev u8 Logical device identifier for the target comport. Specify a value from 1 to 4 to
address comport 1 to 4, respectively.

msec u32 Maximum time, in milliseconds, to wait for the MM to respond.

retries u32 Maximum number of transaction retry attempts.

Sensoray 2600 Programming Guide 73 Comport Transaction Functions

 // Received a bad character, so we must flush the receive buffer.
 printf("Character receive error.\n");
 S26_ComFlush(0, 1, 1000, 1);
}
else
{
 // All is OK, so process the received string.
 RcvBuf[BufLen] = 0; // Append null to end of character string.
 printf("%s\n", RcvBuf); // Display the string.
}

