

PCI Express JPEG Frame Grabber
Software Manual

Model 817 | Rev.C | November 2016

Table of Contents

TABLE OF CONTENTS .. 2

REVISION HISTORY .. 3

SOFTWARE INSTALLATION AND DEMO APPLICATIONS ... 3

OVERVIEW ... 3

DATA TYPES ... 5

VIDEO_MODE ... 5

CAPTURE_MODE ... 6

MODE .. 7

CAP_BUFFER .. 7

CAP_STAT .. 8

OSD_MODE .. 9

FUNCTIONS .. 11

Overview .. 11

S817_OpenChannel ... 11

S817_CloseChannel ... 11

S817_SetVideoMode .. 11

S817_SetCaptureMode ... 12

S817_GetBuffer ... 12

S817_ReleaseBuffer ... 13

S817_BlockDone ... 13

S817_SetVideoSwitch .. 13

S817_SetVideoOut... 14

S817_SetDateTime .. 14

S817_SetOsdMode .. 14

TROUBLESHOOTING AND DEBUGGING TOOLS ... 15

CHAN_STATUS .. 15

SYS_STATUS .. 15

EXTERR.. 16

S817_GetStatusInfo ... 17

S817_GetExtErrInfo ... 17

 3

Revision history

Rev.C, November 2016 – clarified deinterlacing capability.

Rev.B, April 2009 – reflects changes to the API implemented in the SDK versions 2.x.
Please note: SDK versions 2.x are not compatible to versions 1.x. Data structures and
functions have changed. Application software requires some modifications.

Rev. A, September 2008 – original release.

Software Installation and Demo Applications

Sensoray provides Software Development Kits (SDK’s) for Windows and Linux. Each
SDK includes some examples of programming the model 817 board (demo applications).
Please refer to the readme file provided with the software for software installation
instructions and demo applications’ descriptions.

Overview

Model 817 ‘s SDK’s for Windows and Linux allow the development of custom
application software. The Application Programming Interface (API) provided by the
drivers offers maximum flexibility in the application development.

Both Windows and Linux SDK’s include a number of demo applications illustrating the
use of the API. Those provide a good starting point for the custom application
development.

The API supports multiple 817 boards (currently up to 4). Each capture channel (an
entity corresponding to a video source, for example, a camera) is configured and
controlled individually. Wherever possible an effort was made to allow independent
settings for video channels. Capture is performed either in single or continuous mode. In
continuous mode the board captures frames with a selected frame rate and sends the
data to the host automatically, provided the buffers on the host side are emptied
promptly by the application. Capture frame rates for bitmaps and JPEGs can be set up
independently. Image parameters (brightness, contrast, saturation), compression quality
settings, even the image scale can be set individually for each capture channel.

A set of tools is provided for monitoring the board’s status (see Troubleshooting and
Debugging Tools section). Though not required to be used, those may provide some
insight in cases when questions related to the performance arise.

 4

The Data Types section describes special data types of the SDK and provides most of the
information regarding the board’s capabilities and operation restrictions. The Functions
section lists the API’s functions.

All API’s functions return an error code. A non-zero value indicates an error. A brief
description of error codes could be found in s817.h . It is strongly recommended to
always check this code at the application level and trap error conditions. This usually
simplifies troubleshooting and helps avoid severe application errors (crashes). When
reporting an error condition to Sensoray, please provide the API function that caused an
error and the value of the error code.

 5

Data Types

All data types are defined in s817.h . Integer types are 32-bit.

VIDEO_MODE
typedef struct {
 MODE_TV_FORMAT tvFormat;
 MODE_JPG_SIZE jpgSize;
 MODE_BMP_TYPE bmpType;
 int brightness;
 int contrast;
 int saturation;
 int hue;
} VIDEO_MODE;

tvFormat

Defines TV format:
TV_NTSC for NTSC,

TV_PAL for PAL.

Note : It is not recommended to switch the input signal from one TV standard to
another while the board is capturing. This may result in a lock up requiring
software restart.

jpgSize

Defines captured image size:
SIZE_4CIF - 640x480 (NTSC), 704x576 (PAL);
SIZE_4CIFI - 640x480 (NTSC), 704x576 (PAL), deinterlaced (JPEG only);
SIZE_2CIF - 640x240 (NTSC), 704x288 (PAL);
SIZE_1CIF - 320x240 (NTSC), 352x288 (PAL).

This parameter applies to both JPEG and bitmap captured images.
Images captured in SIZE_2CIF format represent one field of interlaced video. Such
an image looks stretched in the horizontal direction, if displayed directly, but it does
not have motion artifacts characteristic to interlaced images. Capture of fields is
supported only at the frame rate (i.e. one field per frame, 30 fields per second for
NTSC, 25 for PAL).
Images captured in SIZE_1CIF format represent one field of interlaced video scaled
down horizontally by a factor of 2. The same capture rate limitation as for
SIZE_2CIF applies.
Images captured in SIZE_4CIFI format have one field recreated by interpolating the
lines of another field. This removes motion artifacts from captured JPEGs at the
expense of some loss of vertical resolution. Bitmaps captured in this mode are still
interlaced.
PAL images captured in SIZE_4CIF and SIZE_1CIF sizes have slightly distorted
aspect ratio of 1.222 instead of 1.333.

bmpType

Format of uncompressed image. Currently only monochrome 1 byte/pixel (Y8)
format is supported.

 6

brightness

Video brightness. Must vary between 0x00 (darkest) to 0xff (brightest). The default is
0x80.

contrast

Video contrast. Must vary between 0x00 (lowest) to 0xff (highest). The default is 0x80.

saturation

Video saturation. Must vary between 0x00 (no color) to 0xff (maximum). The default
is 0x80.

hue

Video hue (irrelevant in PAL mode). The value is 8-bit signed: -128 (0x80) to 127
(0x7f). The default is 0.

CAPTURE_MODE
typedef struct {
 CAP_MODE capMode;
 int capType;
 int compQuality;
 int frameRateBmp;
 int frameRateJpg;
} CAPTURE_MODE;

capMode

Defines capture mode :
CAP_MODE_CONT – continuous capture (the board sends captured frames at
requested frame rate continuously;
CAP_MODE_SINGLE – a single image is captured. A call to S817_SetCaptureMode
is required to capture one image.

capType

Types of images to capture (can be OR’ed):
CAP_JPG – enable JPEG capture;
CAP_BMP – enable bitmap capture;
CAP_OFF – disable capture.

compQuality

Defines the level of JPEG compression: must vary between 0 (highest compression,
smallest file size, lowest quality) and 100 (lowest compression, largest file size,
highest quality). The size of a valid JPEG file is limited to 80KB.

frameRateBmp
frameRateJpg

Define capture frame rates for JPEG and bitmap images, respectively. Apply to cases
when capMode is set to CAP_MODE_CONT. The following values are allowed:

frameRateBmp
frameRateJpg

Frame rate, frames per second

NTSC PAL

 7

FR_FULL 30 25
FR_4_5 24 20
FR_2_3 20 16.7
FR_1_2 15 12.5
FR_2_5 12 10
FR_1_3 10 8.3
FR_1_5 6 5

FR_1_10 3 2.5
FR_1_15 2 1.7

The frame rates in the table apply to JPEG and bitmap capture independently, that is, if
frameRateBmp = FR_1_2 and frameRateJpg = FR_1_2, the application will
capture 15 JPEGs and 15 bitmaps every second (NTSC). However, when JPEGs and
bitmaps are captured simultaneously in 4CIF resolution on all 16 channels, the
combined rate is limited to 400 fps (NTSC) and 330 fps (PAL).

Actual capture rate achieved in a particular case depends also on the application
software and operating system performance. The application software must empty
the capture buffers allocated in host’s RAM promptly. Momentary “distractions” of
the host computer can cause the lack of free capture buffers, and occasional frame
loss. The resulting capture rate may be, strictly speaking, slightly lower than full.
Usually this difference is not more than a fraction of a percent.

Real life application software will be performing additional tasks that could affect
capture rate. It is recommended to set the capture rate such that it is limited by the
setting, but not by the system’s performance. That will result in more predictable and
stable capture rates. For example, if the hard drive is capable of saving only 5
frames/second, one would achieve better results setting the capture rate to 5
frames/second, not 15.

MODE
typedef struct {
 VIDEO_MODE vMode;
 CAPTURE_MODE cMode;
} MODE;

Combines VIDEO_MODE and CAPTURE_MODE structures. Used by S817_OpenChannel

function.

CAP_BUFFER
typedef struct {
 int bufId;
 char *pData;
 char *pStat;

 8

 int width;
 int height;
} CAP_BUFFER;

Defines the capture buffer structure. Capture buffers are allocated by the driver in the
host’s RAM. The driver allocates multiple (currently 4) buffers per capture channel.
Once the requested captured images are transferred to a capture buffer, the buffer is
marked as busy and an application may access the data using the pointers defined in

CAP_BUFFER. The driver does not copy any image data, just provides the proper pointer
values.
An application has to release the buffer promptly (see S817_ReleaseBuffer function),
so that the board can transfer the data to the host.

bufId

Buffer index. The value of bufId is set by the driver and is used by an application
when a buffer is being released back.

pData

A pointer to image data, which may be JPEG or bitmap data depending on the
requested data type. The actual size of the data and its validity are indicated in the
capture status structure pointed to by pStat .

pStat

A pointer to status data. See CAP_STAT structure.

width, height

Image dimensions based on the selected image size (see VIDEO_MODE structure).
Those values are inserted by the driver.

CAP_STAT
typedef struct {
 int board;
 int chanId;
 int bufId;
 int capType;
 int videopresent;
 int valid;
 int jpgsize;
 int tick;
 int frameCnt;
 int reserved[4];
} CAP_STAT;

Defines capture status structure. Capture status is returned with each captured buffer
(see CAP_BUFFER structure).

board

Index of the board that the buffer was captured from (1 .. SYS_MAXBOARDS, see
s817.h).

chanId

 9

Index of an input channel that the buffer was captured from (1 .. 16). A channel is
a combination of hardware and software allowing video capture from a specific
video input of the 817 board.

bufId

Buffer index. Same as bufId of CAP_BUFFER structure.

capType

Reflects the type of captured data: JPEG or bitmap. May be either CAP_JPG or
CAP_BMP.

videopresent

Indicates if the board’s front end was synchronized to incoming video at the
moment the image was captured. A value of 0 means either no input video or loss
of sync.

valid

Indicates if the JPEG buffer contains valid data. Undefined for bitmap capture. A
value of 0 indicates that JPEG data is invalid. The most common reason for that is
compQuality set too high.

jpgsize

Size of JPEG data, bytes. Undefined for bitmap capture.

tick

A value of on-board 1 ms timer’s tick corresponding to the start of data transfer to
the host. The timer starts at 0 when the firmware is loaded onto the board (driver
starts). There is a separate timer for each group of 4 input channels (1-4, 5-9, etc.).
The timers may not start at exactly the same moment of time.

frameCnt

A value of on-board captured frames counter individual for every input channel.

reserved[4]

Reserved for internal use. Do not modify.

OSD_MODE
typedef struct {
 int osdOn;
 int osdBmp;
 int transparent;
 int positionTop;
 int ddmm;
 int year2;
 int fraction;
 char line[80];
} OSD_MODE;
Controls the on-screen display (OSD). OSD is implemented as 1 line of text overlaid on
the captured image. OSD is displayed either in the top or bottom 13 lines of the image.
The character width is 8 pixels, offset from the left edge is 4 pixels.

 10

osdOn

A non-zero value turns on OSD for JPEGs and allows OSD for bitmaps.

osdBmp

A non-zero value turns on OSD for bitmaps if osdOn is not zero.

transparent

If set to a non-zero value, OSD box is transparent (only the characters obstruct the
underlying image). Otherwise OSD box is black.

positionTop

If set to a non-zero value, OSD box is located on top of the image, otherwise – on
the bottom.

ddmm

If set to a non-zero value, the date format of the timestamp is dd-mm (date before
month). Otherwise it is mm-dd (month before date).

year2

If set to a non-zero value, the year value of the timestamp is 2 digits, otherwise 4
digits.

fraction

Number of digits in a fraction of a second display of the timestamp: 0, 1 or 2. Other
values are not allowed.

line

An array containing the text of the OSD. The text is truncated if it does not fit
within the image width.
The following special character combinations are used to control the display:
^d – inserts date;
^t - inserts time.
Date and time data is kept on the board separately for each group of 4 channels
(1..4, 5..9, etc.). It is synchronized to the host’s time by S817_SetDateTime function.

 11

Functions

Overview
Most of the functions return ECODE type which is defined as typedef int ECODE.

A non-zero value is returned in case of an error. A brief description of error codes could
be found in s817.h . It is highly recommended to check the return value of all functions
that return error codes and report the error codes when contacting technical support.

S817_OpenChannel
ECODE S817_OpenChannel (int board, int aChan, MODE *pMode)

Opens a channel on a selected board, initializes operating mode. Required before any
access to a channel. Capture buffers are allocated in the host’s memory as a result of
this call.

board

Index of the board being addressed (1 .. SYS_MAXBOARDS). See s817.h for constants
definitions.

aChan

Index of the input video channel being addressed (1 .. 16).

pMode

Pointer to MODE structure defining required operating mode.

S817_CloseChannel
ECODE S817_CloseChannel (int board, int aChan)

Closes a previously opened channel on a selected board. Required to properly release
the resources (capture buffers) allocated by S817_OpenChannel .

board

Index of the board being addressed (1 .. SYS_MAXBOARDS).

aChan

Index of the input video channel being addressed (1 .. 16).

S817_SetVideoMode
ECODE S817_SetVideoMode(int board, int aChan, VIDEO _MODE *pVMode)

Sets video mode for a selected channel on a selected board. Changes in video mode
affecting tvFormat and/or jpgSize may cause capture delays of 1-2 frames.
Other changes do not cause any capture delays.

 12

board
Index of the board being addressed (1 .. SYS_MAXBOARDS).

aChan

Index of the input video channel being addressed (1 .. 16).

pVMode

Pointer to VIDEO_MODE structure defining required video mode.

S817_SetCaptureMode
ECODE S817_SetCaptureMode (int board, int aChan, CA PTURE_MODE *pCMode)

Sets capture mode for a selected channel on a selected board.

board

Index of the board being addressed (1 .. SYS_MAXBOARDS).

aChan

Index of the input video channel being addressed (1 .. 16).

pCMode

Pointer to CAPTURE_MODE structure defining required capture mode.

S817_GetBuffer
ECODE S817_GetBuffer (int board, int aChan, CAP_BUF FER *cBuf, int
capType)

Copies the pointers to captured data into the CAP_BUFFER structure . New capture to
this buffer is not allowed and the data remains unchanged until the buffer is released
back to the driver (see S817_ReleaseBuffer below).

board

Index of the board being addressed (1 .. SYS_MAXBOARDS).

aChan

Index of the input video channel being addressed (1 .. 16).

cBuf
Pointer to CAP_BUFFER structure.

capType

Type of captured data requested: bitmap or JPEG. Must be either CAP_JPG or
CAP_BMP.

 13

S817_ReleaseBuffer
ECODE S817_ReleaseBuffer (int board, int aChan, int bufId, int capType)

Releases a buffer back to the driver. Capture to this buffer is allowed.

board

Index of the board being addressed (1 .. SYS_MAXBOARDS).

aChan

Index of the input video channel being addressed (1 .. 16).

bufId
Buffer index. See CAP_BUFFER structure.

capType

Type of buffer to be released: bitmap or JPEG. Must be either CAP_JPG or CAP_BMP.

S817_BlockDone
ECODE S817_BlockDone(int board, int to, int *aChan, int *capType)

Waits for the board to capture requested data. It is a blocking function, i.e. it does not
consume CPU time when waiting.

board

Index of the board being addressed (1 .. SYS_MAXBOARDS).

to

Timeout value in milliseconds. The function returns after this period of time even if
the selected channel is not ready. The return value of the function in this case is non-
zero. If timeout is set to 0, the function checks the capture status and returns
immediately.

aChan

A pointer to a variable receiving the index of the channel having data. The driver
implements a round-robin algorithm, so that all the channels are fairly represented.

capType

A pointer to a variable receiving the type of data available for a given channel. Can be
CAP_JPG or CAP_BMP, or their logical OR.

S817_SetVideoSwitch
ECODE S817_SetVideoSwitch(int board, int *switchOut)

Controls the analog video crosspoint switch.

board

Index of the board being addressed (1 .. SYS_MAXBOARDS).

switchOut

 14

An array of 4 integers. Each member of switchOut defines an input video channel
connected to the corresponding output video channel. For example, setting
switchOut[2] to 5 connects video input 5 to video output 2.

S817_SetVideoOut
ECODE S817_SetVideoOut(int board, unsigned int outE n)

Controls the output switch of the analog video crosspoint switch. This feature allows
connecting outputs from multiple boards to the same video monitor (in parallel).

board

Index of the board being addressed (1 .. SYS_MAXBOARDS).

outEn

Four lower bits of this parameter control the output switches of the video crosspoint
switch. Bit 0 controls output 0, bit 1 controls output 1, etc. Setting a bit to 1 closes the
switch (connects the signal to the output connector of the 817 board). Setting a bit to 0
opens (disconnects) the switch.

S817_SetDateTime
ECODE S817_SetDateTime(int board)

Copies system date and time settings from the host to the board. The date and/or
time values may be used for on screen display (OSD).

board

Index of the board being addressed (1 .. SYS_MAXBOARDS).

S817_SetOsdMode
ECODE S817_SetOsdMode(int board, int aChan, OSD_MOD E *osd)

Controls OSD mode for a selected input channel.

board

Index of the board being addressed (1 .. SYS_MAXBOARDS).

aChan
Index of the input video channel being addressed (1 .. 16).

osd

Pointer to OSD_MODE structure.

 15

Troubleshooting and Debugging Tools
This section describes data types and functions used for obtaining various status
information from the 817 board. Though not required to be used during normal
operation, those could provide assistance in resolving various performance issues.

CHAN_STATUS
typedef struct {
 int lastCmd;
 unsigned int chanTick;
 int putToSleep;
 int lockPend;
 int fvidStat;
 unsigned int noFreeBufJpg;
 unsigned int noFreeBufBmp;
} CHAN_STATUS;

Defines a status structure for a capture channel. Returned as part of SYS_STATUS
structure by S817_GetStatusInfo function.

lastCmd

Last command received by a channel.

chanTick

Value of system 1 ms timer corresponding to the last frame captured by a channel
(frame capture rate always equals the video source frame rate regardless of the
frame decimation setting which affects the output frame rate).

putToSleep
lockPend

A non-zero value of any of those indicates a critical hardware error on a channel.

fvidStat

A value of 1 indicates normal operation. Other values indicate a critical hardware
error.

noFreeBufJpg, noFreeBufBmp
This value is a running count of the conditions when there was no free buffer
available on the host to accept data from the board. It does not indicate a critical
error, but could be used to gauge the overall performance of the system. Usually a
small number of those cases is registered when the application starts. Steady
increase of this value indicates an application’s performance bottleneck and results
in some decrease of capture rate.

SYS_STATUS
typedef struct {

 16

 CHAN_STATUS chanData[4];
 unsigned int extErrAddr;
 unsigned int dspAddr;
 unsigned int fwVer;
 unsigned int inPciRead;
 unsigned int inPciWrite;
 unsigned int hostLate;
 unsigned int reserved[8];
} SYS_STATUS;

Defines system status structure. System status is obtained with the help of
S817_GetStatusInfo function for a group of channels (1 .. 4, 5 .. 9, etc.).

chanData[4]

An array of 4 structures of CHAN_STATUS type (see above), one for each of 4
channels belonging to a group.

extErrAddr

Internal use, do not modify.

dspAddr

Internal use, do not modify.

fwVer

Firmware version (major in bits [31:16], minor in bits [15:0]).

inPciRead

The board is attempting to read data from host. Normally is 0.

inPciWrite

The board is attempting to write data to host. Normally is 0.

reserved[8]

Internal use, do not modify.

EXTERR
typedef struct {
 unsigned int tick;
 unsigned int ecode;
 unsigned int reserved[2];
} EXTERR;

Defines the extended error structure. The extended error information for each capture
channel is kept in an array of EXTERR elements of the size SYS_EXTERR_BUF_SIZE
(defined in s817.h , currently 64). This array is copied from the board to the buffer in
the host’s memory by a call to S817_GetExtErrInfo (see below). The first element of the
array is used to keep track of the total number of errors registered for a given capture
channel (in .tick member), the rest are used as a ring buffer. Each valid entry of the
ring buffer keeps the information on the type of the error (.ecode) and the time of
occurrence in units of the 1 ms timer (.tick). Let’s assume, for example, that the buffer

 17

is err[64] , where err is of EXTERR type. If err[0].tick is 17, then the elements err[1]
to err[18] contain valid error information. If err[0].tick is 100 , then members
err[1] to err[63] contain error information for the last 63 out of total 100 errors that
were registered for a selected channel.

tick

Timer tick corresponding to the occurrence of the error.

ecode

Error code. The error codes returned in EXTERR structure are different from those
returned by the API functions. Please record the diagnostics output prior to
contacting the technical support.

reserved[2]

Internal use, do not modify.

S817_GetStatusInfo
ECODE S817_GetStatusInfo (int board, int dsp, SYS_S TATUS *sysStat)

Gets status information for a group of 4 channels.

board

Index of the board being addressed (1 .. SYS_MAXBOARDS).

dsp
Index of the group of channels being addressed (0 .. 3). Use 0 to obtain status for
channels 1-4, 1 for channels 5-9, etc.

sysStat

Pointer to SYS_STATUS structure accepting the data.

S817_GetExtErrInfo
ECODE S817_GetExtErrInfo (int board, int dsp, int e rrChan, EXTERR *err)

Gets extended error information from the board.

board

Index of the board being addressed (1 .. SYS_MAXBOARDS).

dsp

Index of the group of channels being addressed (0 .. 3). Use 0 to obtain status for
channels 1-4, 1 for channels 5-9, etc.

errChan

Index of the requested channel within a group (0..4). For example, to obtain extended
error information for channel 7, set dsp to 1 and errChan to 2. The value of 4 within
each group selects extended error information of the communication channel
common for four capture channels within one group.

 18

err

An array of SYS_EXTERR_BUF_SIZE elements of EXTERR type accepting the data. Must
be allocated by the application software before a call to S817_GetExtErrInfo .

