
1 

SENSORAY CO., INC. 

 

PC/104+ MPEG 
Capture Device 

 
Model 314 (Rev.A) 

 
Windows SDK User’s Manual 

 

July, 2006 

 

 

 

 

 

 

 

 Sensoray 2006 

7313 SW Tech Center Dr. 

Tigard, OR 97223 

Phone 503.684.8073 • Fax 503.684.8164 

sales@sensoray.com 

www.sensoray.com 

 



2 

Table of Contents 

LIMITED WARRANTY .................................................................................................. 3 

SPECIAL HANDLING INSTRUCTIONS ........................................................................... 4 

INTRODUCTION ......................................................................................................... 5 
Feature Summary .................................................................................................. 5 
Specifications ........................................................................................................ 5 

SOFTWARE ................................................................................................................ 6 
Feature Summary .................................................................................................. 6 
Installation ............................................................................................................ 6 
Redistribution ........................................................................................................ 6 
SDK Reference ...................................................................................................... 7 

Release Notes .............................................................................................. 7 
General Notes .............................................................................................. 7 
Demo applications........................................................................................ 8 
Functions Reference ..................................................................................... 8 
Motion Detection........................................................................................ 29 
Motion Map................................................................................................ 31 
Motion Detection Quickstart ........................................................................ 32 
Motion Map Example .................................................................................. 33 



3 

Limited warranty 
Sensoray Company, Incorporated (Sensoray) warrants the hardware to be free from defects in 
material and workmanship and perform to applicable published Sensoray specifications for two 
years from the date of shipment to purchaser. Sensoray will, at its option, repair or replace 
equipment that proves to be defective during the warranty period. This warranty includes parts 
and labor. 

The warranty provided herein does not cover equipment subjected to abuse, misuse, accident, 
alteration, neglect, or unauthorized repair or installation. Sensoray shall have the right of final 
determination as to the existence and cause of defect. 

As for items repaired or replaced under warranty, the warranty shall continue in effect for the 
remainder of the original warranty period, or for ninety days following date of shipment by 
Sensoray of the repaired or replaced part, whichever period is longer. 

A Return Material Authorization (RMA) number must be obtained from the factory and clearly 
marked on the outside of the package before any equipment will be accepted for warranty work. 
Sensoray will pay the shipping costs of returning to the owner parts that are covered by warranty. 
A restocking charge of 25% of the product purchase price, or $105, whichever is less, will be 
charged for returning a product to stock. 

Sensoray believes that the information in this manual is accurate. The document has been carefully 
reviewed for technical accuracy. In the event that technical or typographical errors exist, Sensoray 
reserves the right to make changes to subsequent editions of this document without prior notice to 
holders of this edition. The reader should consult Sensoray if errors are suspected. In no event 
shall Sensoray be liable for any damages arising out of or related to this document or the 
information contained in it. 

EXCEPT AS SPECIFIED HEREIN, SENSORAY MAKES NO WARRANTIES, EXPRESS 
OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF 
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S 
RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE 
PART OF SENSORAY SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID 
BY THE CUSTOMER. SENSORAY WILL NOT BE LIABLE FOR DAMAGES RESULTING 
FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR 
CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEROF. 

 

 

 

Third party brands, names and trademarks are the property of their respective owners. 



4 

Special handling instructions 
The circuit board contains CMOS circuitry that is sensitive to Electrostatic Discharge (ESD).  

Special care should be taken in handling, transporting, and installing circuit board to prevent ESD 
damage to the board. In particular: 

• Do not remove the circuit board from its protective anti-static bag until you are ready to 
install the board into the enclosure. 

• Handle the circuit board only at grounded, ESD protected stations. 

• Remove power from the equipment before installing or removing the circuit board. 

 

 



5 

Introduction 
Model 314 is a PC/104+ video and audio capture device. It converts the signal from an analog 
video source (NTSC or PAL) into one of the supported MPEG or MJPEG streams along with 
(optional) audio from a line or microphone input. Model 314 is powered through the PC/104+ bus 
and does not require any external power supplies. 

Feature Summary 

� MPEG1/2/4 or MJPEG capture at full frame rate and full resolution. 

� 4 Composite or 2 S-video inputs. 

� Stereo audio is mixed synchronously into MPEG stream (mono for the microphone input). 

� On screen display (OSD) – multiple text overlays. 

� Three-zone motion detection. 

� Free Windows drivers, demo application and a Software Development Kit (SDK). 

 

Specifications 

Inputs Video: composite 1-4 (BNC), S-video 1-2(DIN), 75 Ohm 
Audio: line in stereo (2xRCA), 10 kOhm. 

Electret microphone bias current, max 3mA 

Input video formats NTSC (M), PAL (BDGHIMN) 

Output formats MPEG1, MPEG2 (MP@ML), MPEG4 (SP@L3 with B-
frames), MJPEG (Motion JPEG) 

Output resolutions 720x480 (NTSC, 30 frames/sec),  
720x576 (PAL, 25 frames/sec), 
352x240 (SIF),  352x288 (CIF) 

OSD max 96 characters per frame, 16x16 font 

Snapshot Raw, JPG and BMP formats,  
concurrent with capture/preview 

Power +5V, 500mA (through PC/104+ bus) 

 



 

6 

Software 
 

Feature Summary 

Model 314 is shipped with drivers for Microsoft Windows 2000/XP. A full-featured demo application 
allows preview and saving of MPEG video on the host computer, control of the compression and 
video settings, text overlays, and snapshot capture. 

An included SDK can be used to integrate video capture into any application. The SDK allows 
maximum flexibility by providing an API for all the 314’s functions. The source code of the demo 
application is a suggested starting point for custom application development. 

 

Installation 

The software may be distributed on a CD or downloaded from the Sensoray’s web site.  

Run the setup program (314setup.exe) from the distribution disk or folder. Software components, 
including a demo application with the source code, will be installed into the /Program 
Files/Sensoray/314 folder. 

During the installation the program will install ffdshow.  During the setup accept the defaults.  (If 
MPEG1 and 2 are not selected, the setup program will automatically enable them in the registry.)  

The driver is preinstalled with the setup program but may pop up a Windows Logo warning.  Click 
“Continue Anyway”.  The driver will install without prompting for file locations.  

If using Windows 2000, the setup program will check for DirectX9 and launch a browser on the 
Microsoft website if not present.  DirectX9 is required on Windows 2000, but not XP.  Please 
download the latest DirectX9 runtime from the Microsoft website if setup requests it. 

Redistribution 

The SDK CD contains the redistributables in the API directory.  The following files are required for 
re-distribution: 

• API\mid314.dll (installed in application exe directory) 

• API\filters\ffmp2encoder.ax (needs registered with regsvr32) 

• API\filters\m2tsmuxer.ax (needs registered with regsvr32) 

• API\filters\smartdump.ax (needs registered with regsvr32) 



 

 7 

• API\filters\wavdest.ax (needs registered with regsvr32) 

• API\windir\s314param.ini (install to windows directory) 

Additionally, ffdshow-20051221.exe should be redistributed for preview applications.   

The drivers must also be redistributed to end-users and installed for proper function.  They are 
included in the drivers directory. 

 

SDK Reference 

Release Notes 

V.1.0.1 (July 23,2006): 

• Initial release 

 

The common API flow is described below. Refer to the complete functions reference for the details 
on individual functions. 

 

General Notes 

The common API flow is described below. Refer to the complete functions reference for the details 
on individual functions. 

1. Initialization. This is performed by a call to SN_Open() function. Initial default capture 

settings are loaded. 

2. A call to SN_Open() may be optionally followed by calls to the functions controlling 

various settings: 

• input source: SN_SetSource(); 

• video preview window: SN_SetBoardWindow(); 

• video system and geometry: SN_SetVidSys(), SN_SetVidSize(); 

• video parameters (brightness, contrast, saturation, hue): SN_SetLevels(); 

• compression configuration: SN_SetEncodeType(), SN_SetBitrate(); 

• audio input configuration: SN_SetAudioInput(), SN_SetMute(); 



 

 8 

• record mode: SN_SetRecordMode(); 

• OSD: SN_SetOverlayText(). 

3. A call to SN_StartPreview() starts the 314 for preview only. The stream received from 

the PCI bus is decoded and displayed in the user window specified with 

SN_SetBoardWindow().  

4. If recording is required, the stream should be started with a call to SN_StartRecord, and 

stopped with a call to SN_StopRecord(). 

5. During the recording the following function could be used to obtain some useful 
information: 

• SN_GetStatus() – current status (record, playback), current recorded file size 

and path; 

6. SN_Close() must be called before application terminates to clean up properly. 

Demo applications 

The SDK includes two demo applications provided with the source code to illustrate the use of SDK’s 
functions. 

app-314-demo – an MFC application. Displays the stream in the window, allows modification of 
compression, video, and audio parameters, recording the stream to the hard drive. 

DemoConsoleApp – a simple console application.  

Functions Reference 

All API functions are declared using the following definition: 

#define MID314_API   extern "C" __declspec(dllimport) 

 

MID314_API int SN_Open( void ); 

Must be called before any other API functions are called to open the SDK. 

Parameters 

None. 

Returns 

0 on success, negative value if error (see mid314types.h for error codes list). 

 

MID314_API int SN_Close( 



 

 9 

); 

Must be called before application terminates for proper clean-up of the SDK and SDK objects. 

Parameters 

None. 

Returns 

0 on success, negative value if error (see mid314types.h for error codes list). 

 

 

MID314_API int SN_SetBoardWindow(  

    HWND hwnd,  

    BOOL bResize,  

    int board  

); 

 

Sets the window for display or rendering the video stream.  If called, will automatically set 

SN_SetRenderVideo(TRUE).  

 

hwnd  

A handle to the window to display video in. 

bResize 

If set to TRUE, the window will be resized to match native video size. 

board 

board number in the system (use 0 for single board setups). 

 

 

MID314_API int SN_SetPlaybackWindow(  

    HWND hwnd,  

    BOOL bResize  

); 

Sets the window for playback.  

 

hwnd  

A handle to the window to display video in. 



 

 10 

bResize 

If set to TRUE, the window will be resized to match native video size. 

 

 

MID314_API int SN_SetSource( 

   MID314_SOURCE input, 

   int board 

); 

Selects between composite and S-video inputs. 

Parameters 

input 

enumerated input MID314_SOURCE (see mid314types.h). For model 314 the allowed values 

are MID314_SOURCE_COMPOSITE_0, MID314_SOURCE_COMPOSITE_1, 

MID314_SOURCE_COMPOSITE_2, MID314_SOURCE_COMPOSITE_3, 

MID314_SOURCE_SVIDEO_0 and MID314_SOURCE_SVIDEO_1. 

board 

board number in the system (use 0 for single board setups). 

 

Returns 

0 on success, negative value if error (see mid314types.h for error codes list). 

 

MID314_API int SN_GetSource( 

   MID314_SOURCE *pSource, 

   int board 

); 

Retrieves current input settings. 

Parameters 

pSource 

pointer to the value of current input. 

board 

board number in the system (use 0 for single board setups). 

Returns 

0 on success, negative value if error (see mid314types.h for error codes list). 



 

 11 

 

MID314_API int SN_SetVidSys( 

   MID314_VIDSYS vidsys, 

   int board 

); 

Sets the input video system (NTSC, PAL). 

Parameters 

vidsys 

video system enumerated type (see mid314types.h). 

board 

board number in the system (use 0 for single board setups). 

Returns 

0 on success, negative value if error (see mid314types.h for error codes list). 

 

MID314_API int SN_SetEncodeType( 

   MID314_ENCODING encodeType, 

   int board 

); 

Sets the desired encoding type (MPEG1,2,4).  

Parameters 

encodeType 

encoding enumerated type (see mid314types.h). 

board 

board number in the system (use 0 for single board setups). 

Returns 

0 on success, negative value if error (see mid314types.h for error codes list). 

 

MID314_API int SN_GetEncodeType(  

   int board 

); 

Retrieves current encoding type. 

Parameters 



 

 12 

board 

board number in the system (use 0 for single board setups). 

Returns 

Current encoding setting, -1 if error. 

 

MID314_API int SN_SetBitrate( 

   int bitrate, 

   int board 

); 

Set the desired bitrate of the output stream. 

Parameters 

bitrate 

desired bitrate (in bits per second). Recommended values are 1,000,000 to 6,000,000 for D1 

resolutions, 300,000 to 2,000,000 for CIF resolutions. 

board 

board number in the system (use 0 for single board setups). 

 

Returns 

0 on success, negative value if error (see mid314types.h for error codes list). 

 

 

MID314_API int SN_GetBitrate( 

   int board 

); 

Retrieves current bitrate setting. 

Parameters 

board 

board number in the system (use 0 for single board setups). 

Returns 

current bitrate (in bits per second), -1 if error. 

 

 



 

 13 

MID314_API int SN_GetStatus( 

   MID314STATUS *pStatus, 

   int board 

); 

Retrieves current status information (see mid314func.h for MID314STATUS type definition). 

Parameters 

pStatus 

pointer to status variable. 

board 

board number in the system (use 0 for single board setups). 

 

Returns 

0 on success, negative value if error (see mid314types.h for error codes list). 

 

MID314_API int SN_StartPreview( 

   int board 

); 

Starts video and audio streaming for preview only. 

Parameters 

board 

board number in the system (use 0 for single board setups). 

Returns 

0 on success, negative value if error (see mid314types.h for error codes list). 

 

MID314_API int SN_StopPreview( 

   int board 

); 

Stops video and audio streaming for preview. If recording is enabled it is stopped as well. 

Parameters 

board 

board number in the system (use 0 for single board setups). 

Returns 



 

 14 

0 on success, negative value if error (see mid314types.h for error codes list). 

 

MID314_API int SN_SetRecordMode( 

   MID314_REC recMode, 

   int board 

); 

Sets the record mode (see mid314types.h for MID314_REC type definition). 

Parameters 

recMode 

record mode. 

board 

board number in the system (use 0 for single board setups). 

 

Returns 

0 on success, negative value if error (see mid314types.h for error codes list). 

 

MID314_API int SN_StartRecord( 

   char *fileName, 

   int board 

); 

Starts recording to a file. 

Parameters 

fileName 

full path to the target file, no extension. 

board 

board number in the system (use 0 for single board setups). 

 

Returns 

0 on success, negative value if error (see mid314types.h for error codes list). 

 

MID314_API int SN_StopRecord( 

   int board 

); 



 

 15 

Stops the recording. Preview will continue. 

Parameters 

board 

board number in the system (use 0 for single board setups). 

Returns 

0 on success, negative value if error (see mid314types.h for error codes list). 

 

MID314_API int SN_SnapshotToFile( 

   char *fileName, 

   int filetype, 

   int qual, 

   int board 

); 

Takes a snapshot and saves it to a file. 

Parameters 

fileName 

full path to the target file, no extension. 

filetype 

file type(s) to save to (MID314_FILE_JPEG, MID314_FILE_BMP, see mid314types.h). 

qual 

JPEG quality (25-100, higher value yields better quality and bigger files). 

board 

board number in the system (use 0 for single board setups). 

 

Returns 

Image size in bytes or a negative value in case of an error. 

 

MID314_API int SN_PlaybackVideo( 

   char *fileName 

); 

Starts playback of the specified file in current window. 

Parameters 



 

 16 

fileName 

full path to the target file. 

Returns 

0 on success, negative value if error (see mid314types.h for error codes list). 

 

 

MID314_API int SN_StopPlayback( 

); 

Stops video playback. 

Parameters 

none 

Returns 

0 on success, negative value if error (see mid314types.h for error codes list). 

 

MID314_API int SN_PausePlayback( 

   BOOL bPause 

); 

Pauses/resumes playback. 

Parameters 

bPause 

TRUE for pause, FALSE for resume. 

Returns 

0 on success, negative value if error (see mid314types.h for error codes list). 

 

MID314_API int SN_PlaybackSetRate( 

   double drate 

); 

Changes playback speed. 

Parameters 

drate 



 

 17 

a double specifying playback speed. 0.5 corresponds to half of normal speed, 2.0 - double 

the normal speed. Minimum speed is 0.5. 

Returns 

0 on success, negative value if error (see mid314types.h for error codes list). 

 

 

 

MID314_API int SN_PlaybackSetSeekPosition( 

   int percent, 

   int range 

); 

Seeks the position in the file being played back. The position is calculated as file_size * percent / 
range. 

Parameters 

percent 

a numerator of the position in the file expressed as a fraction of a total file size. 

range 

a denominator of the position in the file expressed as a fraction of a total file size. 

Returns 

0 on success, negative value if error (see mid314types.h for error codes list). 

 

MID314_API int SN_PlaybackGetSeekPosition( 

   int range 

); 

Retrieves the current position in the file being played back. The position is calculated as file_size * 
percent / range. 

Parameters 

range 

a denominator of the position in the file expressed as a fraction of a total file size. 

Returns 

a numerator of the position in the file expressed as a fraction of a total file size, negative value 

if error (see mid314types.h for error codes list). 



 

 18 

 

MID314_API int SN_SetLevels( 

   int param, 

   char value, 

    int board  

); 

Sets brightness, contrast, saturation and hue of the captured video. 

Parameters 

param 

defines the parameter to set (MID314_LEVEL_CONTRAST, 

MID314_LEVEL_BRIGHTNESS, MID314_LEVEL_SATURATION, MID314_LEVEL_HUE). 

See see mid314types.h for definitions. 

value 

defines the value of selected parameter  

( brightness 0 to 255 default 128,  

saturation –128 to 127 default 64,  

contrast –128 to 127 default 64,  

hue –128 to 127 default 0). 

board 

board number in the system (use 0 for single board setups). 

 

Returns 

0 on success, negative value if error (see mid314types.h for error codes list). 

 

MID314_API int SN_SetMute( 

   BOOL bMute, 

    int board  

); 

Mutes audio on the host computer. Audio will still be recorded. If called while streaming, the 
function will stop and restart the sream. 

Parameters 

bMute 



 

 19 

TRUE to mute the audio. 

board 

board number in the system (use 0 for single board setups). 

 

Returns 

0 on success, negative value if error (see mid314types.h for error codes list). 

 

 

MID314_API int SN_GetMute( 

   BOOL *bMute, 

    int board  

); 

Retrieves current muting setting. 

Parameters 

bMute 

pointer to retrieved setting. 

board 

board number in the system (use 0 for single board setups). 

 

Returns 

0 on success, negative value if error (see mid314types.h for error codes list). 

 

MID314_API int SN_SetOverlayText( 

   int idx, 

   const POINT *pPos, 

   const overlay_text_t *pOvlText, 

   BOOL bEnable, 

   BOOL bUpdate, 

   int board  

); 

Configures text overlays (OSD). 

Parameters 



 

 20 

idx 

Overlay number (index), 0-5. 

pPos 

position of top left corner of overlay window (in pixels). Position is rounded to the nearest 

16x16 pixel block. 

pOvlText 

text to display (a maximum of 96 characters total for all overlay windows). See 

mid314types.h for the definition of overlay_text_t. 

bEnable 

TRUE enables current overlay region. 

bUpdate 

if setting multiple regions has to be FALSE for all regions except the last. 

board 

board number in the system (use 0 for single board setups). 

 

Returns 

0 on success, -1 on failure, -2 – out of text space. 

 

MID314_API int SN_ClearOverlay( 

    int board  

); 

Clears all overlays. 

Parameters 

board 

board number in the system (use 0 for single board setups). 

Returns 

0 on success, negative value if error (see mid314types.h for error codes list). 

 

MID314_API int SN_SetVidSize( 

   int iVidSize, 

   int board  

); 



 

 21 

Sets the captured video size (resolution). 

Parameters 

iVidSize 

video size: 0 – full resolution, default (720x480 NTSC, 720x576 PAL), 1 – CIF (360x240 

NTSC, 360x288 PAL). 

board 

board number in the system (use 0 for single board setups). 

 

Returns 

0 on success, negative value if error (see mid314types.h for error codes list). 

 

MID314_API int SN_SetRenderVideo( 

   BOOL bDisplayVideo, 

    int board  

); 

Turns the preview on and off. Recording will continue regardless of this setting. 

Parameters 

bDisplayVideo 

TRUE to enable preview. 

board 

board number in the system (use 0 for single board setups). 

 

Returns 

0 on success, negative value if error (see mid314types.h for error codes list). 

 

MID314_API int SN_GetRenderVideo( 

   BOOL *bDisplayVideo, 

   int board  

); 

Retrieves the preview setting. 

Parameters 

bDisplayVideo 



 

 22 

pointer to retrieved setting. 

board 

board number in the system (use 0 for single board setups). 

 

Returns 

0 on success, negative value if error (see mid314types.h for error codes list). 

 

MID314_API int SN_SetAspectRatio( 

   MID314_ASPECT_MODE mode, 

   int board  

); 

Allows modifying the video aspect ratio for preview. 

Parameters 

mode 

MID314_ASPECT_NONE allows stretched preview image, MID314_ASPECT_CONST 

maintains original aspect ratio (see mid314types.h). 

board 

board number in the system (use 0 for single board setups). 

 

Returns 

0 on success, negative value if error (see mid314types.h for error codes list). 

 

MID314_API int SN_GetAspectRatio( 

   MID314_ASPECT_MODE *mode, 

   int board  

); 

Retrieves the aspect ratio control setting. 

Parameters 

mode 

pointer to retrieved setting. 

board 

board number in the system (use 0 for single board setups). 



 

 23 

 

Returns 

0 on success, negative value if error (see mid314types.h for error codes list). 

 

MID314_API int SN_Repaint( 

   HDC hdc 

); 

Repaint callback, should be called when application receives a WM_PAINT event. This is necessary 
to notify the video renderer of a repaint event. 

Parameters 

hdc 

device context handle or NULL if unknown. 

Returns 

0 on success, negative value if error (see mid314types.h for error codes list). 

 

MID314_API int SN_DisplayChange( 

); 

Informs the video renderer that a WM_DISPLAYCHANGE message has been received by the 
application. This callback should be called when the application has a WM_DISPLAYCHANGE event. 

Parameters 

none 

Returns 

0 on success, negative value if error (see mid314types.h for error codes list). 

 

MID314_API int SN_SetBoardWindow( 

   HWND hwnd, 

   BOOL reserved, 

   int board, 

); 

Sets the window for video streaming.  Overrides SN_SetRenderVideo setting to TRUE. 

Parameters 

hwnd 



 

 24 

Handle to video display window. 

reserved 

reserved parameter. 

board 

current board number. 

 

Returns 

0 on success, negative value if error (see mid314types.h for error codes list). 

 

 

 

MID314_API int SN_SetRemoveMsg( 

   HWND hwnd, 

   int removeMsg, 

   int board  

); 

Sets the value of the message that is sent to the application’s window in case of device removal 
(e.g. USB cable unplugged). 

Parameters 

hwnd 

handle of the window that will receive the message. 

removeMsg 

message value to be sent. 

board 

board number in the system (use 0 for single board setups). 

 

Returns 

0 on success, negative value if error (see mid314types.h for error codes list). 

 

MID314_API int SN_TestDeviceRemoval( 

    int board  

); 



 

 25 

Tests whether device was removed or not. When SN_SetRemoveMessage is called, a message 

window handle and remove message is set. When remove message is received by the application, 
this function is called to confirm the device was removed and if it was, the DLL should be shut 
down. 

Parameters 

board 

board number in the system (use 0 for single board setups). 

Returns 

0 in case the device was not removed, 1 in case it was. 

 

MID314_API int SN_SetVideoPosition( 

   int xpos, 

   int ypos, 

   int xsize, 

   int ysize, 

   int left_clip, 

   int top_clip, 

   int right_clip, 

   int bottom_clip, 

   int board  

); 

Sets the video position in the clipping window. 

Parameters 

xpos, ypos 

x and y coordinates of the top left corner. 

xsize, ysize 

horizontal and vertical sizes of video display. 

left_clip, top_clip, right_clip, bottom_clip 

number of pixels to clip of the left, top, right and bottom sides of source video. 

board 

board number in the system (use 0 for single board setups). 

 

Returns 

0 on success, negative value if error (see mid314types.h for error codes list). 



 

 26 

 

 

MID314_API int SN_GetNumBoards( 

   int *pNumBoards  

); 

Retrieve the number of boards in the system. 

Parameters 

pNumBoards 

Returns the number of boards. 

Returns 

0 if success, negative if error. 

 

 

MID314_API int SN_GetFrame( 

   long inSize, 

   unsigned char *pFrame, 

   BITMAPINFOHEADER *pBMI, 

   int type, 

   int board  

); 

SN_GetFrame retrieves current frame. Type Currently supported for MPEG 1,2,4 only. Please see 
GetFrame.cpp in demo app for an example of using SN_GetFrame. 

Parameters 

inSize  

size of pFrame buffer supplied (should be at least 768*576*3)  

pFrame  

pointer to buffer of size inSize where frame is stored  

pBMI  

pointer to bitmap info.  Currently only the following parameters are updated:  pBMI-

>biHeight, biWidth, biSizeImage. 

type  

type of buffer to retrieve.   



 

 27 

type = 0 for YcbCr buffer formatted as follows.  Y plane first 768*576 bytes. Cb plane next 

768*576/4 bytes. Cr plane next 768*576/4 bytes.   

type = 1 for RGB8 buffer.   

 

board 

   Board number in system. 

 

Returns 

0 if success, negative if error. 

 

 

 

MID314_API int SN_SetMD( 

   MID314_MDConfig_t *pMD, 

   HANDLE event, 

   int board  

); 

Sets or updates the motion detection region according to MID314_MDConfig_t (see mid314types.h 
file for description). The main demo app shows an example of using motion detection. 

Parameters 

*pMD 

 pointer to MD structure 

event 

   handle to event to notify. 

board 

   Board number in system. 

 

Returns 

0 if success, negative if error. 

 

MID314_API int SN_StopMD( 

   int board  

); 

Stops motion detection. 



 

 28 

Parameters 

board 

   Board number in system. 

Returns 

0 if success, negative if error. 

 

MID314_API int SN_DisplayMDRegions( 

   BOOL bOnOff, 

   int board  

); 

Displays motion detection regions on displayed image (if rendering the video to screen). Requires 
Windows XP or DirectX 9 (Windows 2000). 

Parameters 

bOnOff 

 display on or off 

board 

   Board number in system. 

 

Returns 

0 if success, negative if error. 

 

MID314_API int SN_GetMDData( 

   int *region, 

   unsigned char *buf, 

   int bufsize, 

   int board  

); 

Retrieves the motion detection data. See demo application for example. 

Parameters 

region 

the returned region mask.  0x02: region 1,  0x04: region 2, 0x08 region 3. The region mask 

should be used to detect if motion detected or not. 

 

buf 



 

 29 

a pointer to motion macroblock map (must be size 208). 

 

bufsize 

 size of bufmap.  MUST use 208. 

Board 

 board number in system. 

 

The primary detection is by region.  If further information is wanted, the MB map will show if 
motion passed threshold in a given region on a macroblock by macroblock level (16 pixels x 16 
pixels) on a bit level. For example,  (buf[0] & 0x01) represents macroblock 1, (buf[0] & 0x02) 
represents macroblock 2,  (buf[1] & 0x01) represents macroblock 8. 

Returns 

0 if success, negative if error. 

 

 

Motion Detection 

Motion Detection on the 314(and 2250) involves regions of interest and motion thresholds.  The 
chip firmware has 3 user programmable regions of interest.  The SDK shows 4 regions of interest 
in the structure MID314_MDConfig_t.  The 4th region, corresponding to index 3(starts from zero) is 
reserved for possible future use. 
 
The regions are described in pixels.  The user specifies an upper left co-ordinate and a lower right 
pixel coordinate for each region. 

There is a requirement that the regions do not overlap on a macro-block(MB) level.  They should 
be spaced 16 pixels apart as one macro-block corresponds to a 16x16 pixel block.  The 
MDSettingDlg.cpp file in the demo app demonstrates verification of the MD regions. 

If a region is unused, the coordinates {0,0} should be used for both the upper left corner and 
bottom right corner. 

In each region, motion is detected on the basis of threshold values.  The first threshold is the SAD 
(sum of absolute differences), which represents changes in intensity.  The recommended range for 
the SAD is 20-150.  In general SAD will catch fast motion across the target.  For testing purposes, 
start at SAD=40 (with sensitivity = 80).   

The second threshold is the motion vector threshold.  The recommended range is 0-1600. For 
testing purposes(with sensitivity = 80), start at MV=700.  The MV threshold will detect slow 
motion across the target better than SAD. 

Finally, there is a sensitivity value.  It may be set from 0-100.  A recommended start setting is 80.  
In general, higher thresholds may be used for higher sensitivity settings. 

Mathematically, motion detection in the chip is calculated as follows: 



 

 30 

 

H/w comes up with a set of MV for each MB in each direction, MV = ((Vx * Vx) + Vy*Vy)) 
>> 2). 

  

If ((Vx*Vx+Vy*Vy)>>2)>MV_THRESHOLD), then this MB is motion detected. 

If (Sad>SAD_THRESHOLD), then this MB is also motion detected. 

If the detected MB is in a specified region, a motion map is produced and a notification 
sent to the user. 

The motion detection configuration structure is as follows (mid314types.h) (The last region is 
reserved): 

 
typedef struct 

{ 
    MID314_PointCorrds_t ULPoint[ 4 ]; 

    MID314_PointCorrds_t BRPoint[ 4 ]; 
    unsigned short u32SADThresholdValues[ 4 ]; 
    unsigned short u32MVThresholdValues[ 4 ]; 

    unsigned short u32SensitivityValues[ 4 ]; 
} MID314_MDConfig_t; 

 



 

 31 

 

Motion Map 

When motion is detected, an event is generated with data containing the region(s) of interest with 
motion and a motion map. The motion map contains all the MBs which were hit inside a given 
region.  Note that some MBs will be shown outside the region (please see Example 2 in the motion 
examples below).  If the user sets one region to cover the whole image, then the Motion Map will 
represent motion hits across the whole image.  This allows the user to implement a custom MD 
method on a macro-block by macro-block level. 

A sample motion map where the region covers the full screen is shown below.  The blank lines on 
the bottom are not part of the image because the image was NTSC(480) not PAL(576).  The demo 
map shows macro-blocks up to number 36(576/16) in the vertical direction.  The motion map (and 
hit statistics) can be viewed by clicking “Show Map”.  

 



 

 32 

 

Figure 1 Motion Map( statistics represent number of motion events per region). 

The motion-map above shows a hit at macro-blocks 2,3,4,5 and other macro-blocks where the 
squares are red.  The white color MB #1 does not have a hit in this motion map.  Macroblock 2 = 
pixels (16,0) to (31,16).  The 32 hits corresponds to 32 motion events received by region 1.  It 
does not represent the total number of red macroblocks(motion macroblocks) in the motion map. 

Motion Detection Quickstart 

The demo application shows an example of motion detection.  A step by step example is shown below: 

• Select Configure in the motion detection group box(lower right corner of dialog).   

• Select a region or regions. Click on Enable Region1 Setting.  



 

 33 

• Enter 720 for BR_x and 320 for BR_y. 

• Click OK. 

• Start stream (if not already started). 

• Select “Show Regions”.  Region selected above will be shown on the image. 

• Select “Show Map”.  A macro-block map with detailed hits for region 1 above will be shown 
along with a counter of the number of hits in region 1. 

• To disable motion detection, call SN_StopMD or in the demo app, disable all MD regions. 

 

Motion Map Example 

Example 1: Three regions of interest 

The following motion detection regions were defined.  An overlay of the defined regions can be seen by 
selecting the Configure button in the dialog window. 



 

 34 

 

Figure 2 : Three(3) Motion Detection Regions of Interest 

The above regions were set-up by selecting the “Configure” button.  A screen shot of the setup for the 
regions above is show in figure 3. 



 

 35 

 

Figure 3: Setup for regions shown in Figure 2 

 

Example 2 : Advanced Motion Map 

The motion map may show macroblocks outside the range of interest.  This example demonstrates 
how the motion map works.  In short, only those macroblocks inside the defined areas of interest 
will show motion.  Some macroblocks outside the region of interest may show motion.  These 
should be ignored. 

In this example, a small motion detec tion region in the upper left corner is produced as shown in 
Figure 4. 



 

 36 

 

Figure 4 

  

 This corresponds to the region show in Figure 5. 



 

 37 

 

Figure 5: Small region in upper left corner 



 

 38 

 

Figure 6 

The produced motion map when motion occurs is shown in Figure 6.  The black rectangle shows 
macroblocks outside the area of interest.  As example earlier, these may be ignored.  The number of 
hits 37 is the number of times a motion event occurred in region 1.  It is not a count of the 
macroblocks in the region. 

Advanced: Note that no macroblocks are shown below the region in the y direction.  When a 
motion map is created, it scans from left to right starting at the top and going to the bottom.  Any 
macroblock motion along the scan line is included in the motion map.  So stray motion 
events(which may be ignored) occur beside the region, but not above or below the region. 

 



 

 39 

Example 3: (Advanced) Custom motion detection 

Some customers may want motion information on a macroblock by macroblock basis.  If this is the 
case, then only one region should be defined.  This region should encompass the whole picture in 
order to get all the macroblock events included in the motion map. 

Step 1: 

Set up the region to cover the full screen as shown in Figure 7.   

 

Figure 7 

Step 2:  

Process the motion map. Figure 8 shows a processed image map from the returned event data.   



 

 40 

 

Figure 8 

When the event is captured by the waiting user program( see demo source code), it calls 
SN_GetMDData( &region, pBuf, BUFSIZE, board_number).  The region(s) where motion was 
detected is given in a bitmask in the region variable.  BUFSIZE should be set to 208, the size of the 
motion map.  pBuf will contain the macroblock map on a bit by bit basis. 

For example, assume the following is returned by SN_GetMDData where pBuf is an array of 
unsigned 8 bit characters. 

pBuf[0] = 0x7c; 

pBuf[1] = 0x00; 

pBuf[2] = 0x89; 



 

 41 

From pBuf[0], we have the motion detect events for the first 8 macroblocks.  0x7c= 01111100b 
which represents the following: 

Macroblock 1 : bit field = 0, so no motion. 

Macroblocks 2-6 : bit field = 1,  so motion detected 

Macroblocks 7-8: no motion detected. 

pBuf[1] = 0x00, so macroblocks 9-16 have no motion in them. 

 

The motion map given in pBuf thus allows a user to create a custom motion detection algorithm( 
The threshold will be the same for each macroblock) where they can generate motion detection on 
an individual macroblock level (16x16 pixels). 

 


