# **INSTRUCTION MANUAL**

Sensoray Model 621/720

Digital I/O Board (Rev F)

November 23, 2016

# **TABLE OF CONTENTS**

| LIMITED WARRANTY                                                                       |    |
|----------------------------------------------------------------------------------------|----|
| SPECIAL HANDLING INSTRUCTIONS                                                          |    |
| 1. INTRODUCTION                                                                        |    |
| 2. INSTALLATION                                                                        |    |
| 3. RESET                                                                               |    |
|                                                                                        |    |
| 4. DEVICE AND VENDOR IDENTIFICATION                                                    |    |
| 5. DIGITAL I/O INTERFACE                                                               | 6  |
| 5.1 Overview                                                                           | 6  |
| 5.2 Registers                                                                          | 8  |
| 5.2.1 I/O Ports                                                                        | 9  |
| Example: Setting I/O direction                                                         |    |
| 5.2.2 Latch/Output enable mode (channels 64-71)                                        |    |
| Example: Setting/Clearing Latch/Output enable                                          |    |
| 5.2.3 Edge type select register (channels 0-63)                                        |    |
| Example: Edge select register.                                                         |    |
| 5.2.4 Arming & Disarming Capture (channels 0-63)  Example: Setting up to capture edges |    |
| 5.2.5 Tabled Arming & Disarming Example                                                |    |
| 5.2.6 Edge capture flag register (channels 0-63)                                       |    |
| Example: Reading Edge Capture Flag Register                                            |    |
| 5.2.7 Clearing Captured Edges                                                          |    |
| Example: Clearing captured Edges.                                                      |    |
| 6. INTERRUPTS                                                                          | 12 |
| 6.1 Overview                                                                           | 13 |
| 6.2 Individual interrupt enable/disable                                                |    |
| 6.3 Clearing an interrupt flag.                                                        |    |
| 6.4 Global Interrupt Enable/Disable                                                    |    |
| Example: GIE (Global Interrupt Enable)                                                 |    |
| 6.5 Interrupt Flags.                                                                   |    |
| 7. SX20 VERSION 0.6 DLL                                                                | 14 |
| 7.1 Overview                                                                           | 12 |
| 7.2 DLL Functions.                                                                     |    |
| X20 InitSystem.                                                                        |    |
| X20 CloseSystem                                                                        |    |
| X20 WritePort                                                                          |    |
| X20 ReadPort                                                                           |    |
| X20 Reset                                                                              |    |
| X20 GetHDIO                                                                            |    |
| X20 SetBit                                                                             |    |
| X20_Clearbit                                                                           | 16 |
| X20_ReadBit                                                                            | 16 |
| X20_InterruptOpen                                                                      |    |
| X20_InterruptClose                                                                     | 16 |
| X20_InterruptEnable                                                                    | 17 |
| X20_InterruptDisable                                                                   |    |
| 7.3 Types used in the SX20 DLL                                                         | 17 |

| APPENDIX A: SPECIFICATIONS       | 18 |
|----------------------------------|----|
| APPENDIX B: ACCESSORIES          | 18 |
| APPENDIX C: CONNECTOR PINOUT     | 19 |
| APPENDIX D: REVISION INFORMATION | 20 |
| APPENDIX E: TECHNICAL SUPPORT    | 20 |

# **Limited Warranty**

Sensoray Company, Incorporated (Sensoray) warrants the Model 621/720 hardware to be free from defects in material and workmanship and perform to applicable published Sensoray specifications for two years from the date of shipment to purchaser. Sensoray will, at its option, repair or replace equipment that proves to be defective during the warranty period. This warranty includes parts and labor.

The warranty provided herein does not cover equipment subjected to abuse, misuse, accident, alteration, neglect, or unauthorized repair or installation. Sensoray shall have the right of final determination as to the existence and cause of defect.

As for items repaired or replaced under warranty, the warranty shall continue in effect for the remainder of the original warranty period, or for ninety days following date of shipment by Sensoray of the repaired or replaced part, whichever period is longer.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before any equipment will be accepted for warranty work. Sensoray will pay the shipping costs of returning to the owner parts that are covered by warranty.

Sensoray believes that the information in this manual is accurate. The document has been carefully reviewed for technical accuracy. In the event that technical or typographical errors exist, Sensoray reserves the right to make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should consult Sensoray if errors are suspected. In no event shall Sensoray be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, SENSORAY MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER'S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF SENSORAY SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. SENSORAY WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEROF.

# **Special Handling Instructions**

The Model 621/720 circuit boards contains CMOS circuitry that is sensitive to Electrostatic Discharge (ESD).

Special care should be taken in handling, transporting, and installing the board to prevent ESD damage to the board. In particular:

- Do not remove the circuit board from its protective anti-static bag until you are ready to configure the board for installation.
- Handle the circuit board only at grounded, ESD protected stations.
- Remove power from the PCI system before installing or removing the circuit board.

## 1. Introduction

The Sensoray models 621/720 are 72 channel digital I/O cards. The features include:

- 72 digital I/O channels.
- 64 channels have edge detection and interrupt capability.
- 8 channels have input latch and output enable capability.
- 64 I/O channels are grouped in eight blocks of eight channels. 8 I/O channels are grouped in two blocks of four channels. Each block may be programmed as inputs or outputs.

The 620 is a PCI card whereas the 721 is a Compact PCI card. Except for where otherwise specified, this document applies to both models.

The board is powered from the 5V supply of the PCI bus. No auxiliary power supplies are required. Low power circuitry is used to minimize system power consumption and enhance reliability.

A high-density connector on the card's front panel is provided for connecting the I/O channels to external circuitry. A solid state relay board (see Sensoray model 720RB) will often be used to facilitate connections to real world circuits.

# **Block Diagram**

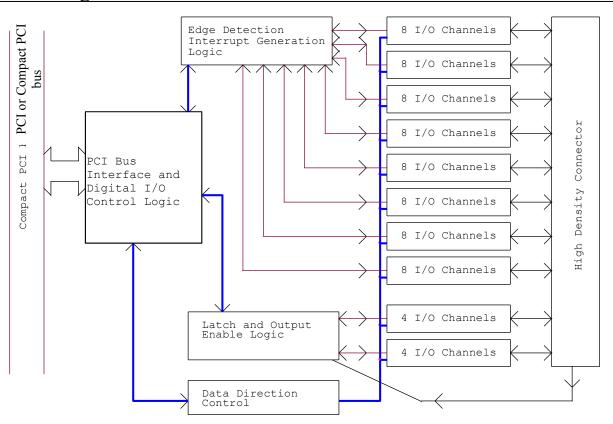



Figure 1

## 2. Installation

The installation of the board into a PCI or Compact PCI system is straight forward as no special adjustment (jumpers) are required.

## 3. Reset

After a system reset or at power up the board is in its default state

- Global interrupt enable (GIE) is disabled
- Channel interrupt enables are cleared (disabled)
- Event capture enables are indeterminate
- Edge selections are indeterminate
- All I/O channels are all set to input mode
- Output registers are indeterminate
- Channel 64 through 71 are set to simple I/O mode (no latching/output enable)
- Light emitting diode 'D1' will be on (controlled by LOE bit which is clear)

## 4. Device and Vendor Identification

This is the information that identifies a board in the system.

Device ID: 9050 Sub Device ID: 6000 Vendor ID: 10B5 Sub Vendor ID: 0001

# 5. Digital I/O Interface

**Note**: Any examples referred to in this manual are written in Visual Basic format. Look at the C & Visual Basic samples included with the board for more examples.

## 5.1 Overview

The board provides 72 digital I/O channels. 64 channels have edge detection capability. 8 channels have input latch and output enable capability.

The 64 edge detection capable channels (channels 0-63) are divided into groups of eight. Each group can be set as inputs or outputs by setting its corresponding data direction register (DDR).

If edge capture is desired, the arm capture register can be enabled for any particular input channel. In addition, either capture on a positive or negative going edge can be selected.

A capture event can generate an interrupt if a channel's corresponding interrupt enable bit is set. If an interrupt occurs, a channel interrupt flag will be set such that the user can determine the source.

The eight remaining I/O channels (channels 64-71) are divided into two groups of four. Each group can be set as inputs or outputs by setting its corresponding data direction register (DDR).

A latch/output enable (LOE) mode is available for channels 64 through 71. Setting the latch enable register (LOE) enables this mode. When enabled this feature is applied to all eight channels.

The LOE mode allows a user to latch the data inputs (channels 64 through 71) by asserting the LATCH input line. The data can be then read at the user's convenience. In addition, the outputs in this mode are tri-stated unless the user asserts the OUTEN input line.

# 5.2 Registers

| I/O bank 0 I/O port 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00 hex - Read/Write 0                                                                                              |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| I/O CHANNELS 0-31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                    |  |  |  |  |
| I/O bank 1 I/O port  31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7  I/O CHANNELS 32-63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 04 hex = Read/Write                                                                                                |  |  |  |  |
| I/O bank 2 I/O port Offset:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 08 hex – Read/Write                                                                                                |  |  |  |  |
| 31     30     29     28     27     26     25     24     23     22     21     20     19     18     17     16     15     14     13     12     11     10     9     8     7       X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     < | 6 5 4 3 2 1 0<br>I/O CHANNELS 64-71                                                                                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0C hex – Read only  6 5 4 3 2 1 0                                                                                  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 hex — Read only<br>6 5 4 3 2 1 0                                                                                |  |  |  |  |
| Bank 0 interrupt flags  31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7  INTERRUPT FLAGS CHANNELS 0-31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14 hex – Read only  6 5 4 3 2 1 0                                                                                  |  |  |  |  |
| Bank 1 interrupt flags  31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7  INTERRUPT FLAGS CHANNELS 32-63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18 hex – Read only  6 5 4 3 2 1 0                                                                                  |  |  |  |  |
| Bank 0 edge select register - Offset: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7  EDGE SELECT REGISTERS CHANNELS 0-31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bank 0 edge select register  31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |  |  |  |  |
| Bank 1 edge select register       Offset:         31       30       29       28       27       26       25       24       23       22       21       20       19       18       17       16       15       14       13       12       11       10       9       8       7         EDGE SELECT REGISTERS CHANNELS 32-63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20 hex – Read/Write  6 5 4 3 2 1 0                                                                                 |  |  |  |  |
| Bank 0 arm capture register         Offset:           31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7           ARM CONTROL REGISTERS CHANNELS 0-31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24 hex — Read/Write                                                                                                |  |  |  |  |
| Bank 1 arm capture register  31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7  ARM CONTROL REGISTERS CHANNELS 32-63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28 hex — Read/Write  6 5 4 3 2 1 0                                                                                 |  |  |  |  |
| Bank 0 interrupt enable register Offset:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2C hex – Read/Write                                                                                                |  |  |  |  |
| 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6 5 4 3 2 1 0                                                                                                      |  |  |  |  |
| NTERRUPT ENABLE REGISTERS CHANNELS 0-31     Superior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                    |  |  |  |  |
| INTERRUPT ENABLE REGISTERS CHANNELS 32-63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                    |  |  |  |  |
| Data direction/Misc./Status register Offset:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34 hex – Read/Write                                                                                                |  |  |  |  |
| 31 30 29 28 27 26 25 24 23 22 21 20 GIRQ* X X IRQ3* IRQ2* IRQ1* IRQ0* CAP3* CAP2* CAP1* CAP0* C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X X LOE GIE                                                                                                        |  |  |  |  |
| ADM V V V V DDR9 DDR8 DDR7 DDR6 DDR5 DDR4 DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 2 1 0  DR3 DDR2 DDR1 DDR0  121 16 22 9.15 0.7                                                                    |  |  |  |  |
| AKIVI A A A A 68-71 64-67 56-63 48-55 40-47 32-39 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | l-31 16-23 8-15 0-7                                                                                                |  |  |  |  |

Bits marked with an \* are read only.

### 5.2.1 I/O Ports

Reading an I/O port returns either the input logic level (input mode) or the state of the output register (output mode).

The DDR registers are used to set a particular I/O group to function as either inputs or outputs. The DDR bits affect the I/O channels as shown in the table below.

| DDR9     | DDR8     | DDR7     | DDR6     | DDR5     | DDR4     | DDR3     | DDR2     | DDR1     | DDR0     |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| CHANNELS |
| 68-71    | 64-67    | 56-63    | 48-55    | 40-47    | 32-39    | 24-31    | 16-23    | 8-15     | 0-7      |

If a DDR bit is set to zero the associated channels will be inputs. When a DDR bit is set to one the associated channels will be outputs.

If a channel is changed to an output the setting of the output register will be output. To avoid unwanted output levels when making a channel group outputs, preset the output registers (write to the associated channels) with desired values.

Note: The values read and written to the I/O ports are true (i.e. not inverted).

## Example: Setting I/O direction

```
Call WritePort(Handle, &H34, &H3FF, &H3FF) 'This will make all the channels outputs

Call WritePort(Handle, &H34, &H0, &H3FF) 'This will make all the channels inputs
```

# 5.2.2 Latch/Output enable mode (channels 64-71)

Latching and Output Enable is only available on channels 64-71.

When the LOE bit (bit 17) of the "Data direction/Misc./Status" register is set to one, LOE mode is in effect.

In this mode data present on input channels 64-71 is latched into a holding register as the LATCH strobe input falls from 5V to 0V. The host any time thereafter can read the latched data.

Additionally, any channels that have been set as outputs are inactive (tri-state) unless OUTEN strobe input is brought low.

**Note**: If this mode is disabled the channels act as straight I/O ports.

The light emitting diode 'D1' is linked to the LOE bit of the "Data direction/Misc./Status" register. When this bit is 0 the LED is on and when it is 1 the LED if off.

# Example: Setting/Clearing Latch/Output enable

```
Call SetBit(Handle, &H34,17)

'Sets the LOE bit of the DDR/Misc register

Call ClearBit(Handle, &H34,17)

'Clears the LOE bit of the DDR/Misc register
```

## 5.2.3 Edge type select register (channels 0-63)

Input channels may be configured to detect either rising or falling edge transitions.

Set the bits in the "edge select" to "0" to detect rising edges for the associated relay channels, or to "1" to detect falling edges.

## Example: Edge select register.

## 5.2.4 Arming & Disarming Capture (channels 0-63)

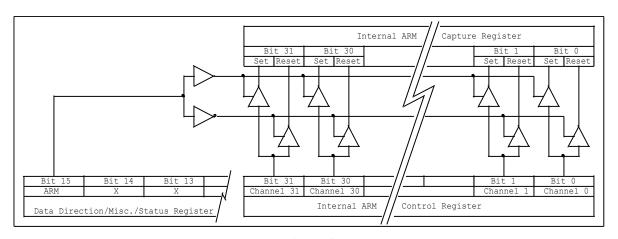



Figure 2

A relay channel must be "armed" before it will capture a detected edge.

An internal ARM Capture register is used to arm or disarm edge capturing. A "1" in the corresponding channel position will allow edge capturing while a "0" will disable edge capturing on that channel. The host system does not have direct access to this register. It is written to using the ARM Control register and the "ARM" bit of the "Data direction/Misc./Status" register.

If ARM bit = "1": All channels whose corresponding bit in the ARM Control register is a "1" are armed. Those channels with a "0" in the ARM Control register remain unchanged.

If ARM bit = "0": All channels whose corresponding bit in the ARM Control register is a "1" are disarmed. Those channels with a "0" in the ARM Control register remain unchanged.

See Figure 2 for a diagram of the process.

Reading the "ARM Control" register accesses the internal ARM Capture register directly and will give the current status of the register. A "0" means that channel is disabled while a "1" shows it is armed.

If a channel is armed for edge capture and the same channel is set for output, a change in output level could result in a captured event. Unless you want a "loop-back" event, a channel set for output should have capturing disabled.

## Example: Setting up to capture edges

```
Call ClearBit(Handle, &H34, 15)
                                                                'Clear the arm bit in the DDR
                                                                'register
Call WritePort (Handle, &H24, &HFFFFFFFF, &HFFFFFFFF)
                                                                'Clears all previous captured events
                                                                '& associated interrupts
Call WritePort (Handle, &H28, &HFFFFFFFF, &HFFFFFFFF)
                                                                'Clears all previous captured events
                                                                '& associated interrupts
Call WritePort (Handle, &H1C, &HFFFFFFFF, &HFFFFFFF)
                                                                'Setup to capture trailing (1-0)
                                                                'edges
Call WritePort(Handle, &H1C, &H0, &HFFFFFFFF)
                                                                'Setup to capture leading (0-1) edges
Call SetBit (Handle, &H34, 15)
                                                                'Set the arm bit in the DDR register
Call WritePort(Handle, &H24, &HFFFFFFFF, &HFFFFFFFF)
                                                                'Enables Edge capture on all channels
Call WritePort(Handle, &H28, &HFFFFFFFF, &HFFFFFFFF) Call WritePort(Handle, &H2C, &HFFFFFFFF, &HFFFFFFFF)
                                                                'Enables Edge capture on all channels
                                                                'Enables all interrupts on edge
                                                                'capture
Call WritePort(Handle, &H30, &HFFFFFFFF, &HFFFFFFFF)
                                                                'Enables all interrupts on edge
                                                                'capture
                                                                'Enable the interrupts
Call InterruptEnable (Handle)
DoEvents
```

## 5.2.5 Tabled Arming & Disarming Example

| 1 | 0         |
|---|-----------|
| 1 | 000001101 |
| 1 |           |
|   | 000001101 |
|   |           |
|   |           |
| 0 | 001000000 |
|   | 001001101 |
|   |           |
| 0 | 000001001 |
|   | 001000100 |
|   | 0         |

Figure 3

## 5.2.6 Edge capture flag register (channels 0-63)

Each channel is associated with a one-bit capture register. The capture register is responsible for logging the occurrence of a detected edge. When a selected edge occurs while capture is enabled, the associated capture flag is set. All the capture flags, for a given I/O bank, can be read simultaneously through the edge capture flag port.

Note that before the capture register can log a detected edge, the channels capture register must be armed. After capturing an edge, the capture register remains set until explicitly reset (cleared) by the host.

## Example: Reading Edge Capture Flag Register

## 5.2.7 Clearing Captured Edges

Sometime after a captured edge is detected, it is necessary to reset the associated capture register. This is accomplished by disarming the associated "arm capture" register.

## Example: Clearing captured Edges

# 6. Interrupts

#### 6.1 Overview

I/O channels 0-63 may be individually programmed to request interrupt service upon capture of a selected edge. Obviously if a channel has not been enabled to capture edges it cannot generate an interrupt. When an interrupt occurs the interrupt routine needs to check all the interrupt flags as there could be more that one interrupt. The speed at which interrupts can be received will depend greatly on the language used, speed of the processor and the programming style of the interrupt routine.

## 6.2 Individual interrupt enable/disable

The channels may be individually programmed to request interrupt service upon capture of a detected edge. Enable or disable a channels interrupt by writing a '1' to the corresponding interrupt enable register. Set the bits in the Interrupt Enable register to enable interrupts for the associated I/O channels, or clear the bits to disable interrupts.

## 6.3 Clearing an interrupt flag

An interrupt flag is cleared by clearing its associated capture register. This is accomplished clearing the associated Arm Capture register. See the section Clearing Captured Edges.

## 6.4 Global Interrupt Enable/Disable

Clearing this bit in the DDR/Misc. register will disable all interrupts simultaneously. Setting the bit will allow enabled interrupts to generate a system interrupt.

When GIE is disabled, interrupts are prevented from reaching the PCI bus host, regardless of other interrupt enable states (i.e. I/O channel interrupt enables). If interrupts are to be recognized, GIE must be enabled. This bit can be manipulated in two ways:

## Example: GIE (Global Interrupt Enable)

```
Call InterruptEnable(Handle)
Call InterruptDisable(Handle)
Or
Call SetBit(Handle,&H34,16)
Call ClearBit(Handle,&H34,16)
'Sets bit 16 of DDR/Misc. register
'Sets bit 16 of DDR/Misc. register
'Sets bit 16 of DDR/Misc. register
```

## 6.5 Interrupt Flags

A '1' in the Interrupt Flag register signifies that an interrupt has occurred on the corresponding channel input since the last time the interrupts were enabled.

## 7. SX20 Version 0.6 DLL

#### 7.1 Overview

The DLL needs to reside in the windows system directory.

During development the SX20.h & SX20f.h must be in the same directory as the users source code.

Note that the users interrupt callback function must use the stdcall calling convention.

When using Visual Basic it was found that a DoEvents command needs to be issued after calling functions related to the interrupt routine. This hands control back to the operating system so that it can execute the function. Only one instance of the SX20 DLL needs to be running to be able to handle up to a maximum of eight cards.

#### 7.2 DLL Functions

# X20\_InitSystem

Must be run before any of the functions that follow can be called.

### **Prototype**

ECODE X20\_InitSystem (PCI \* pci)

#### Parameters

pci - information of cards installed.

pci.boards - number of boards installed. (Supplied by DLL) pci.PCIslot[i] - slot in which card 'i' is placed. (Supplied by DLL)

## Return Value

Returns an error code if initialization fails. Otherwise zero is returned.

# X20 CloseSystem

Must be called when finished using the driver.

### Prototype

void X20 CloseSystem (void)

# X20\_WritePort

This function is used to write to any port on the selected card.

#### Prototype

void X20 WritePort(HDIO han, DWORD offset, DWORD value, DWORD mask)

#### **Parameters**

han - Card handle. If there is only one card installed this value will be zero. If there is more than one card in the system, this value will correspond to the card number.

offset - Offset address of register on card

value - 32-bit value to write

mask - 32-bit mask value for writing data to selected port. Only bits set to '1' will be affected by write function. If mask is set to 0xffffffff, all the bits of the register will be affected.

# X20 ReadPort

This function is used to read any port on the selected card.

## Prototype

DWORD X20 ReadPort(HDIO han, DWORD offset)

#### **Parameters**

han - Card handle. If there is only one card installed this value will be zero. If there is more than one card in the system, this value will correspond to the card number.

offset - Offset address of register on card.

### Return Value

Returns 32-bit value from selected port.

# X20 Reset

Generates a software reset on the selected card.

## Prototype

void X20\_Reset(HDIO han)

#### **Parameters**

han - Card handle. If there is only one card installed this value will be zero. If there is more than one card in the system, this value will correspond to the card number.

# X20 GetHDIO

Knowing the slot number in which a card is installed, this function allows the user to determine its handle number.

#### Prototype

ECODE X20\_GetHDIO(HDIO \*han, DWORD slot)

#### **Parameters**

\*han - Pointer to card handle

slot - Slot number of card installed

# X20\_SetBit

Used to set any bit at any register offset, on the selected card, to '1'.

### Prototype

void X20\_SetBit(HDIO han, DWORD offset, DWORD bit)

#### **Parameters**

han - Card handle. If there is only one card installed this value will be zero. If there is more than one card in the

system, this value will correspond to the card number.

offset- Offset of the register containing the bit to be set. bit- Corresponding number of the bit to be set (0-31).

## X20 Clearbit

Used to clear any bit at any register offset, on the selected card, to '0'.

### Prototype

void X20 ClearBit (HDIO han, DWORD offset, DWORD bit)

#### **Parameters**

han - Card handle. If there is only one card installed this value will be zero. If there is more than one card in the

system, this value will correspond to the card number.

offset Offset of the register containing the bit to be cleared. bitCorresponding number of the bit to be cleared (0-31).

## X20 ReadBit

Used to read any bit at any register offset, on the selected card.

### Prototype

void X20 ReadBit(HDIO han, DWORD offset, DWORD bit)

#### **Parameters**

han - Card handle. If there is only one card installed this value will be zero. If there is more than one card in the system, this value will correspond to the card number.

offset- Offset of the register containing the bit to be read.

bit- Corresponding number of the bit to be read (0-31).

#### Return Value

Returns '1' is the bit is set, '0' if it is clear.

# X20 InterruptOpen

Opens an interrupt thread for the selected card. This thread should be closed before the DLL is closed. Giving the interrupt thread too high a priority can cause other components of the windows operating system to slow down especially while many interrupts are being handled.

#### Prototype

ECODE X20 InterruptOpen(HDIO han, FPTR handleFunction, DWORD priority)

#### **Parameters**

han - Card handle. If there is only one card installed this value will be zero. If there is more than one

card in the system, this value will correspond to the card number.

handleFunction- Address of the users interrupt callback routine. It must use the \_\_stdcall calling convention.

priority- A setting used by windows to determine the interrupt thread's priority.

THREAD\_PRIORITY\_LOWEST = -2

THREAD PRIORITY BELOW NORMAL = -1

THREAD\_PRIORITY\_NORMAL = 0 HREAD\_PRIORITY\_ABOVE\_NORMAL = 1 THREAD\_PRIORITY\_HIGHEST = 2 THREAD\_PRIORITY\_TIME\_CRITICAL = 15

# X20\_InterruptClose

Closes an open interrupt thread for the selected card.

#### **Parameters**

han - Card handle. If there is only one card installed this value will be zero. If there is more than one card in the system, this value will correspond to the card number.

# X20 InterruptEnable

Enables the interrupts by setting the GIE bit of the DDR/Misc register on the selected card.

### Prototype

void X20\_InterruptEnable(HDIO han)

#### **Parameters**

han - Card handle. If there is only one card installed this value will be zero. If there is more than one card in the system, this value will correspond to the card number.

# X20\_InterruptDisable

Disables the interrupts by clearing the GIE bit of the DDR/Misc register on the selected card.

### **Prototype**

void X20\_InterruptDisable(HDIO han)

#### **Parameters**

han - Card handle. If there is only one card installed this value will be zero. If there is more than one card in the system, this value will correspond to the card number.

## 7.3 Types used in the SX20 DLL

```
typedef DWORD HDIO;
                                        //dio board handle;
typedef DWORD ECODE;
                                        //error code;
typedef struct
   DWORD boards;
DWORD PCIslot[SYS_DIOS];
                                        //system structure;
                                        //number of compatible PCI boards found;
                                        //PCI slot numbers for boards found;
typedef struct
    HDIO han;
    FPTR func;
                                         //pointer to users function;
   DWORD priority;
                                        //interrupt thread priority;
                                        //number of interrupts occurred;
   DWORD total;
                                        //number of interrupts lost;
    DWORD lost;
} INT DATA;
```

# **Appendix A: Specifications**

### General

| Interface | Parameter             | Description                                                     |
|-----------|-----------------------|-----------------------------------------------------------------|
| Bus       | Type                  | PCI/ Compact PCI, 32-bit, 33MHz                                 |
|           | Address requirements  | I/O registers: 56-bytes memory address block, PCI configuration |
|           |                       | registers require an additional amount.                         |
| I/O       | Input characteristics | TTL/CMOS compatible.                                            |

#### Limits

|             | Parameter                          | Typical | Min   | Max   | Units |
|-------------|------------------------------------|---------|-------|-------|-------|
| I/O         | Output sink current                |         |       | 20    | mA    |
|             | Output source current              |         |       | 20    | mA    |
|             | Input current                      |         |       | ±10   | uA    |
|             | Total output current (all outputs) |         |       | 500   | mA    |
|             | LATCH strobe pulse width           |         |       |       | ns    |
|             | OUTEN strobe pulse width           | 125     |       |       | ns    |
|             | Captured pulse width               |         | 100   |       | ns    |
| Power       | Operating range                    |         | +4.75 | +5.25 | V     |
|             | Quiescent current                  | 200     |       |       | mA    |
| Temperature | Operating range                    |         | 0     | 70    | C     |

# **Appendix B: Accessories**

There are custom cables and breakout boards available for this product. Contact <a href="mailto:sales@sensoray.com">sales@sensoray.com</a> or visit <a href="mailto:www.sensoray.com">www.sensoray.com</a> for further details.

The mating connector for the board's I/O connector is made by Fujitsu:

FCN-247R080-G/E -connector FCN-240C080-A/S -connector cover

There are several other manufacturers that make similar connectors that will mate with the board's connector.

# **Appendix C: Connector Pinout**



| PIN | FUNCTION    | PIN | FUNCTION |
|-----|-------------|-----|----------|
| 1   | GND         | 41  | I/O 37   |
| 2   | I/O 0       | 42  | I/O 38   |
| 3   | I/O 1       | 43  | I/O 39   |
| 4   | I/O 2       | 44  | I/O 40   |
| 5   | I/O 3       | 45  | I/O 41   |
| 6   | I/O 4       | 46  | I/O 42   |
| 7   | I/O 5       | 47  | I/O 43   |
| 8   | I/O 6       | 48  | I/O 44   |
| 9   | I/O 7       | 49  | I/O 45   |
| 10  | I/O 8       | 50  | I/O 46   |
| 11  | I/O 9       | 51  | I/O 47   |
| 12  | I/O 10      | 52  | GND      |
| 13  | I/O 11      | 53  | I/O 48   |
| 14  | I/O 12      | 54  | I/O 49   |
| 15  | I/O 13      | 55  | I/O 50   |
| 16  | I/O 14      | 56  | I/O 51   |
| 17  | I/O 15      | 57  | I/O 52   |
| 18  | GND         | 58  | I/O 53   |
| 19  | I/O 16      | 59  | I/O 54   |
| 20  | I/O 17      | 60  | I/O 55   |
| 21  | I/O 18      | 61  | I/O 56   |
| 22  | I/O 19      | 62  | I/O 57   |
| 23  | I/O 20      | 63  | I/O 58   |
| 24  | I/O 21      | 64  | I/O 59   |
| 25  | I/O 22      | 65  | I/O 60   |
| 26  | I/O 23      | 66  | I/O 61   |
| 27  | I/O 24      | 67  | I/O 62   |
| 28  | I/O 25      | 68  | I/O 63   |
| 29  | I/O 26      | 69  | GND      |
| 30  | I/O 27      | 70  | LATCH    |
| 31  | I/O 28      | 71  | I/O 64   |
| 32  | I/O 29      | 72  | I/O 65   |
| 33  | I/O 30      | 73  | I/O 66   |
| 34  | I/O 31      | 74  | I/O 67   |
| 35  | GND         | 75  | I/O 68   |
| 36  | I/O 32      | 76  | I/O 69   |
| 37  | I/O 33      | 77  | I/O 70   |
| 38  | I/O 34 igui |     | I/O 71   |
| 39  | I/O 35      | 79  | OUTEN    |
| 40  | I/O 36      | 80  | GND      |
|     |             | -   |          |

# **APPENDIX D: Revision information**

| Date     | Rev. | Revised by   | Description of changes          |
|----------|------|--------------|---------------------------------|
| 10/07/99 | Е    | Dennis Frost | Added sub device & vendor ID's. |
| 11/23/16 | F    | Colette Roth | Added Model 720 text            |
|          |      |              |                                 |
|          |      |              |                                 |
|          |      |              |                                 |
|          |      |              |                                 |

# **APPENDIX E: Technical Support**

For technical support contact Sensoray Company Inc.

Tel: (503) 684-8073 Fax: (503) 684-8164

e-mail: support@sensoray.com WWW: <u>www.sensoray.com</u>