
Sensoray DVR Control Protocol
Copyright © 2023 Sensoray Company, Inc.

December 5, 2023

API Version 1.3

Introduction

All Sensoray DVRs are capable of operating stand-alone with an attached keypad or keyboard. In addition, some
models include a communication interface that allows the DVR to be remotely operated via Sensoray's DVR Control
Protocol (DCP). This document specifies DCP, provides example implementations, and introduces an API that fully
implements DCP.

Functional overview

A DCP-enabled DVR is a server that responds to commands from clients. It provides a single endpoint through which
it communicates with all clients.

A client must provide at least one unique endpoint for each DVR it controls. One endpoint (required) is used to send
commands to and receive replies from the DVR. A second, optional endpoint may be used to receive event
notifications from the DVR.

All information exchanged between DVR and client is conveyed via messages. Three message types are defined:
command, reply and event. Command and reply messages are used in synchronous transactions, whereas event
messages are asynchronous, unsolicited "interrupt" messages issued by the server. The latter allows a client to be
notified when the DVR state is changed automatically or by another client, thereby making it unnecessary to poll the
DVR.

Each message is encapsulated in a COBS-encoded packet with NUL (0x00) packet delimiter. When character-
oriented interfaces are used (e.g., serial communication interface), this allows a client to reliably detect message
boundaries and to differentiate between reply and event messages, which are necessarily multiplexed into a single
character stream.

Basic operation

A DVR function is invoked by sending a command packet to the DVR. Upon receiving a command packet, the DVR
will process the command and send a reply packet to the endpoint from which the command was received. The DVR
will not execute the command or send a reply if a packet error is detected; clients should detect missing replies via
timeout.

Event reporting

When the DVR detects an internal, asynchronous event (e.g., storage becomes full while recording), it will send an
event message to any client which has previously enabled reporting for that event type. Clients do not acknowledge or
reply to received event messages.

Upon DVR power-up, reporting is disabled for all event types. A client may enable event reporting by sending to the
server a CMD_ENABLE_EVENT_REPORTING command that specifies the event types that are to be reported.

Only one remote client can receive event messages. If a remote client attempts to enable or disable event reporting
when it is already enabled for another remote client, the request will be honored and event reporting will be silently
terminated for the other client.

 DVR control protocol 1

Data conventions

Types
The following prefixes are used to indicate data type:

Prefix Type

u8_ unsigned 8-bit integer

u16_ unsigned 16-bit integer

u32_ unsigned 32-bit integer

str_ unsigned 8-bit array containing a null-terminated string

s16_ signed 16-bit integer

dbl_ double-precision floating point

Byte order and packing
Multi-byte values are always little endian, byte-aligned.

Packet structure

An encoded packet consists of a header byte, payload and packet delimiter:
HDR PAYLOAD DELIM

Field
Length
(bytes)

Function Details

HDR 1 COBS header

PAYLOAD 2 to 255 COBS payload COBS-encoded TYPE, BODY and SUM

DELIM 1 Packet delimiter 0x00

The unencoded/decoded payload consists of a message type code, variable-length message body, and checksum:

HDR PAYLOAD DELIM

Payload: TYPE BODY SUM

Field
Length
(bytes)

Function Details

TYPE 1 Message type 0 = command; 64 = reply; 128 = event notification

BODY 0 to 253 Message body Function-specific content, structure and length

SUM 1 Checksum
SUM = 0 - (modulo 256 sum of TYPE and BODY bytes). To validate, sum all
packet bytes (including SUM) and verify least-significant byte = 0.

Command messages
Command messages are conveyed in the BODY fields of command packets (TYPE = 0). A command message consists
of an Opcode byte followed by zero or more data bytes. The data may consist of any combination of single and multi-
byte values. Opcode values are defined in header file dvr_protocol.h.

 DVR control protocol 2

Payload: 0 BODY SUM

Command msg: Opcode Data

Reply messages
Reply messages are conveyed in the BODY fields of reply packets (TYPE = 64). A reply message consists of an
Errcode byte followed by four or more data bytes. The data may consist of any combination of single and multi-byte
values. DVR status (u32_stat) is always included at the end of the data (see Status flags).

Payload: 64 BODY SUM

Reply msg: Errcode Data

Errcode indicates whether the associated command executed normally and, if not, why execution failed. Errcode
values are defined in header file dvr_protocol.h.

Errcode Description Data

DVR_ERR_OK Command executed normally Command-specific

DVR_ERR_INVALID_OPCODE Command not supported –

DVR_ERR_ILLEGAL_ARGVAL Command argument outside legal range –

DVR_ERR_MISSING_ARG Missing command argument –

DVR_ERR_FUNC_PROHIBITED Command could not execute in current DVR state –

DVR_ERR_FILE_NOT_FOUND Specified file does not exist –

DVR_ERR_MALLOC Can't allocate memory –

DVR_ERR_OPEN Can't open DVR communication interface

DVR_ERR_CLOSE Can't close DVR communication interface

DVR_ERR_SOCKCREATE Can't create socket

DVR_ERR_SOCKBIND Socket bind failed

DVR_ERR_RXTHREAD Failed to start receiver thread

DVR_ERR_TXTHREAD Failed to start transmitter thread

DVR_ERR_MUTEXCREATE Can't create mutex

DVR_ERR_LOCKCLOSED Lock closed or timeout

DVR_ERR_SOCKCLOSED Socket closed or shutdown

DVR_ERR_OVERSIZE Command arguments too large

DVR_ERR_PACKETSEND Failed to send command to DVR

DVR_ERR_PACKETREAD Socket closed or read error

DVR_ERR_RUNTPACKET Abnormally short DVR reply packet

DVR_ERR_MISSINGDELIM Abnormally long DVR reply packet

DVR_ERR_CHECKSUM Receive checksum error

DVR_ERR_MSGTYPE Unexpected/unknown TYPE code in DVR reply or event

DVR_ERR_DEPLETED Missing expected data in DVR reply

DVR_ERR_STRINGBUF String buffer too small to receive DVR reply string

DVR_ERR_TIMEOUT Read timeout

DVR_ERR_EVENTTYPE Unrecognized event type

DVR_ERR_STORAGE Out of storage

DVR_ERR_VIDLOCK Video not locked

 DVR control protocol 3

The data in a reply message is guaranteed to be valid only when Errcode is DVR_ERR_OK; for other Errcode
values the data, if present, should be ignored.

Event messages
Event messages are conveyed in the BODY fields of event notification packets (TYPE = 128). An event message
consists of an Event byte followed by zero or more data bytes. The data may consist of any combination of single and
multi-byte values. Event code values are defined in header file dvr_protocol.h.

Payload: 128 BODY SUM

Reply msg: Event Data

Event indicates the type of event being reported and the data attributes.

Event Data

DVR_EVENT_STATUS_CHANGE u32_stat, u32_changemask

 DVR control protocol 4

Commands, API Version 1.3

General

Command
Reply data

Min. API
versionOpcode Data

CMD_GET_API_VERSION – u32_apiver, u32_stat 1.0

CMD_GET_DVR_STATUS – u32_stat 1.0

CMD_ENABLE_EVENT_REPORTING u8_clientid, u32_eventflags, u16_port u32_stat 1.0

CMD_GET_HARDWARE_INFO – u32_hwver, str_model, u32_stat 1.0

CMD_SET_DISPLAY_MODE u8_dispmode u32_stat 1.0

CMD_GET_GENERAL_SETTINGS – u8_dispmode, u32_stat 1.0

CMD_SET_LOW_POWER u8_enable_low_power u32_stat 1.3

CMD_SET_CAPTURE_RES u32_width, u32_height u32_stat 1.3

u32_apiver: 0xAABBCCCC, where AA is major version, BB is minor version, and CCCC is firmware version. For example,
0x010204d2 would indicate API version 1.2 with firmware version 1234 in decimal.

u32_hwver: currently returns 0x01000000 (may change in future version)

str_model: the Sensoray Model number for the product, for example “S4013” or “S4023”

u32_stat: bitwise-or of DVR_STAT_* (see dvr_protocol.h)

u32_eventflags: bitwise-or of DVR_STAT_* (see dvr_protocol.h)

u8_dispmode: one of enum DVR_DISPLAY_MODE (see dvr_protocol.h)

u8_enable_low_power: 0=normal mode 1=low power(video input/output disabled) 2=very low power (CPU sleep; DRAM in self-
refresh mode; must pulse GPI0 to wake up - low at least 500ns)

u32_width, u32_height: resolution of the captured video for video source. (Not applicable to AHD/Composite input.)

Note: Remote clients must set u8_clientid=0

Date/time

Command
Reply data

Min. API
versionOpcode Data

CMD_SET_DATETIME u32_clock u32_stat 1.0

CMD_GET_DATETIME – u32_clock, u32_stat 1.0

u32_clock: an integer counting the number of seconds since 12:00:00AM Jan 1, 1970. See also: DateTime conversion functions in
this document.

 DVR control protocol 5

Record

Command
Reply data

Min. API
versionOpcode Data

CMD_RECORD_START u8_devid, u8_format, u16_bitrate_kbps str_outfilename, u32_stat 1.0

CMD_RECORD_STOP – u32_stat 1.0

CMD_RECORD_PAUSE – u32_stat 1.0

CMD_RECORD_RESUME – u32_stat 1.0

CMD_SET_RECORD_FILENAME str_filename u32_stat 1.3

CMD_SET_RECORD_METADATA u8_data() u32_stat 1.3

CMD_ENABLE_RECORD_METADATA u8_enable u32_stat 1.3

u8_devid: one of enum DVR_STORAGE_DEVID (see dvr_protocol.h) [MMC=0, INTERNAL=1, EXTERNAL=2, BOTH=3]

u8 format: one of enum DVR_VIDREC_FORMAT (see dvr_protocol.h) [RECFMT_MP4=0, RECFMT_TS=1]

u16_bitrate_kbps: an integer for the recording video rate in kilobits/sec. For example, 2 Mbps would be 2000. If zero, uses default
or last set bitrate.

str_outfilename: returned filename for the recorded video.

str_filename: requested filename for the recorded video. The default filename is “^d_^t.mp4” for MP4 format or “^d_^t.ts” for TS
format. The filename may contain special codes:

^d current date in YYYYMMDD format
^t current time in HHMMSS format
^c counter starting at 1, incremented until would not overwrite an existing file

u8_data: binary data to be inserted into the MP4 file at the end of the file after the MOOV atom. The data will be encapsulated in a
SKIP box, and the size of the box will be that of the metadata plus the box header (8 bytes). Note: Data must be uploaded in
chunks - when the data length is non-zero, it is appended to existing data, otherwise the metadata is cleared. Any time metadata is
sent, the metadata enable is forced to disabled (to prevent a partial metadata being written to a file.) After the complete data is
sent, it must be enabled via CMD_ENABLE_RECORD_METADATA. The metadata should be sent and enabled prior to starting the
recording, since its SKIP box will be inserted at the start of the file after the FTYP atom.

u8_enable: Set to 1 to enable insertion of metadata in recording, 0 otherwise.

Play

Command
Reply data

Min. API
versionOpcode Data

CMD_PLAY_SKIP s16_seconds u32_stat 1.0

CMD_PLAY_START u8_dev, str_filename u32_stat 1.0

CMD_PLAY_STOP – u32_stat 1.0

CMD_PLAY_PAUSE – u32_stat 1.0

CMD_PLAY_RESUME – u32_stat 1.0

CMD_SET_PLAY_SPEED u8_speed u32_stat 1.0

CMD_GET_PLAY_SETTINGS – u8_speed, u32_stat 1.0

s16_seconds: an integer number of seconds to seek forward (positive) or backward (negative) in the currently playing video.

u8_dev: one of enum DVR_STORAGE_DEVID (see dvr_protocol.h) [MMC=0, INTERNAL=1, EXTERNAL=2]

str_filename: the file name of the video to be played.

u8_speed: one of enum DVR_PLAY_SPEED (see dvr_protocol.h) [PLAY_NORMAL=0, PLAY_FAST_FORWARD=1,
PLAY_FAST_REVERSE=2]

 DVR control protocol 6

Snapshot

Command
Reply data

Min. API
versionOpcode Data

CMD_VIEW_SNAPSHOT u8_dev, str_filename u32_stat 1.0

CMD_GRAB_SNAPSHOT u8_dev, u8_quality str_outfilename, u32_stat 1.0

CMD_SNAPSHOT_STOP - u32_stat 1.1

CMD_SET_SNAPSHOT_FILENAME str_filename u32_stat 1.3

CMD_SET_SNAPSHOT_METADATA u8_data() u32_stat 1.3

CMD_ENABLE_SNAPSHOT_METADATA u8_enable u32_stat 1.3

u8_dev: one of enum DVR_STORAGE_DEVID (see dvr_protocol.h) [MMC=0, INTERNAL=1, EXTERNAL=2]

str_filename: the file name of the snapshot to be grabbed or displayed. The default filename is “^d_^t.jpg”. The filename may
contain special codes:

^d current date in YYYYMMDD format
^t current time in HHMMSS format
^c counter starting at 1, incremented until would not overwrite an existing file

str_outfilename: returned file name of the captured snapshot.

u8_quality: the JPEG quality, ranged 2 (lowest) to 97 (highest.) If zero, uses default or last set quality.

u8_data: binary data to be inserted into the JPEG file in front of the EOI marker. The data should start with a valid metadata marker
to avoid corrupting the JPEG bytestream. Suggested usage: comment 0xFFFE marker followed by 2-byte length and text data, or
0xFFEn APPn Application-specific data. Note: Data must be uploaded in chunks - when the data length is non-zero, it is appended
to existing data, otherwise the metadata is cleared. Any time metadata is sent, the metadata enable is forced to disabled (to
prevent a partial metadata being written to a file.) After the complete data is sent, it must be enabled via
CMD_ENABLE_SNAPSHOT_METADATA.

u8_enable: Set to 1 to enable insertion of metadata in JPEG snapshots, 0 otherwise.

 DVR control protocol 7

File system

Command
Reply data

Min. API
versionOpcode Data

CMD_GET_FILECOUNT u8_dev u32_filecount, u32_stat 1.0

CMD_GET_FILENAME u8_dev, u32_fileindex str_filename, u32_stat 1.0

CMD_GET_FILENAME_SIZE u8_dev, u32_fileindex str_filename, u32_size, u32_stat 1.3

CMD_DELETE_FILE u8_dev, str_filename u32_stat 1.0

CMD_RENAME_FILE u8_dev, str_oldname, str_newname u32_stat 1.0

CMD_GET_FILESYSTEM_INFO u8_dev u32_free_kb, u32_total_kb, u32_stat 1.3

CMD_OPEN_FILE u8_dev, u8_mode, str_pathname u32_stat 1.3

CMD_CLOSE_FILE u32_stat 1.3

CMD_READ_FILE_CHUNK u8_count u8_data[], u32_stat 1.3

CMD_WRITE_FILE_CHUNK u8_data[] u32_stat 1.3

u8_dev: one of enum DVR_STORAGE_DEVID (see dvr_protocol.h) [MMC=0, INTERNAL=1, EXTERNAL=2]

u32_filecount: the number of files present in the video storage directory (DCIM) on the specified device.

u32_fileindex: the zero-based index of the file whose name is to retrieved. To enumerate all the files on the device, iterate through
index 0 to file count - 1.

str_filename: the file name returned at the specified index, or the file name to be deleted. The directory used relative to the file
name is the video storage directory (DCIM) on the specified device.

u32_size: the size of the file returned at the specified index.

str_oldname: the existing file to be renamed

str_newname: the new name of the file to be renamed. If the file name is already in use, the error returned will be
DVR_ERR_ILLEGAL_ARGVAL.

u32_free_kb: available number of kilobytes (1000 bytes) on the device indicated.

u32_total_kb: total size of the device in kilobytes (1000 bytes).

str_pathname – the file path name to be opened, relative the root directory, and must use the forward-slash character “/” as
directory separators. For example, “DCIM/image.jpg”.

u8_mode: For reading, set to 0. For writing, set to 1.

u8_count: The number of bytes to read. This is limited to the maximum size of a reply packet (size TBD.)

u8_data: Data in reply to a READ command, or data to be written in a WRITE command.

Notes on CMD_OPEN_FILE: Only one file may be opened at a time. If a new file is opened, any previously opened file will be
closed. If a file is not closed before power down, data may be lost. The READ/WRITE command must match the mode used to
open the file. The READ command may return zero-length data at the end of the file, or DVR_ERR_STORAGE if the storage
device is removed. Similarly, the WRITE command may DVR_ERR_STORAGE if the storage device returns an error, perhaps if
the storage becomes full or the file size would exceed FAT32 limitation.

 DVR control protocol 8

Video overlay

Command
Reply data

Min. API
versionOpcode Data

CMD_SET_OSD_TEXT u8_region, str_txt u32_stat 1.0

CMD_SET_OSD_POSITION u8_region, u16_top, u16_left u32_stat 1.0

CMD_SET_OSD_ENABLE u8_region, u8_enable u32_stat 1.0

CMD_SET_OSD_BACKGROUND u8_region, u8_bg u32_stat 1.0

CMD_SET_OSD_CLOCK_FORMAT u8_datefmt, u8_timefmt u32_stat 1.0

CMD_GET_OSD_CLOCK_FORMAT – u8_datefmt, u8_timefmt, u32_stat 1.0

CMD_GET_OSD_SETTINGS u8_region u8_enable, u8_bg, u16_top, u16_left, u32_stat 1.0

CMD_OSD_IMAGE_CREATE u8_region, u16_size u32_stat 1.0

CMD_OSD_IMAGE_UPLOAD_CHUNK u8_region, u16_addr, u8_data() u32_stat 1.0

CMD_OSD_IMAGE_INSTALL u8_region, u8_imagetype u32_stat 1.0

u8_region: integer range 0 to 15, each region can be positioned independently. Note: regions 0 to 13 are shared with DVR
Secondary Overlay Text, each line uses one region. API version 1.2 allows value 16 to address the Primary Overlay Text region.

str_txt: text to be displayed. Use ‘^n’ to insert newline, ‘^d’ for date, ‘^t’ for time, ‘^e’ for encoder 0, ‘^f’ for encoder 1. API version
1.2 adds additional virtual encoders ‘^q’ for encoder 2, ‘^w’ for encoder 3. Note: unscaled encoder counts are displayed as
integers, otherwise with 2 decimal places (.00) for encoders 0,1 and 1 decimal place (.0) for encoders 2,3.

u16_top, u16_left: the vertical and horizontal position for the upper left hand corner of the text region.

u8_enable: set the osd enabled and size [0=off 1=8x14 2=16x16 3=19x32(HD only)]

u8_bg: text region color and background [0=white/black 1=white/transparent 2,3=not available 4=black/transparent 5=black/white
6=white/blue] Note: solid backgrounds (not transparent) offer better performance. Too many or too large overlays may impact
frame rate and DVR responsiveness.

u8_datefmt: one of enum DVR_DATE_FORMAT (see dvr_protocol.h for details)

u8_timefmt: one of enum DVR_TIME_FORMAT (see dvr_protocol.h for details)

u16_size: size of image to upload, in bytes.

u16_addr: byte address of the upload chunk.

u8_data: upload chunk data.

u8_imagetype: one of enum DVR_OSD_IMAGETYPE (see dvr_protocol.h for details) [0=PNG 1=BMP]

 DVR control protocol 9

Video adjust

Command
Reply data

Min. API
versionOpcode Data

CMD_SET_VIDEO_ADJUST u8_param_id, u8_setting u32_stat 1.0

CMD_GET_VIDEO_ADJUST u8_param_id u8_setting, u32_stat 1.0

u8_param_id: one of enum DVR_VIDEO_ADJ_ID (see dvr_protocol.h for details)

u8_setting: value to be set or retrieved

Enum
index

Param Name Param value range and defaults Supported Model

0 ADJ_BRIGHTNESS 0 to 255, default 128 401X, 4023

1 ADJ_AUTOBRIGHT 0=off 1=on, default 1 401X

2 ADJ_CONTRAST 0 to 255, default 128 401X, 4023

3 ADJ_HUE (s8) -128 to 127, default 0 401X, 4023

4 ADJ_SATURATION 0 to 255, default 128 401X, 4023

5 ADJ_CHROMA_FILT 3=Low 4=High, default 4 401X

6 ADJ_LUMA_FILT 3=Low 0=High, default 3 401X

7 ADJ_COMB_FILT 0=Off 1=On 3=Adaptive, default 3 401X

Video configuration

Command
Reply data

Min. API
versionOpcode Data

CMD_SET_VIDEO_CFG u8_format, u8_deint, u8_decimate u32_stat 1.0

CMD_GET_VIDEO_CFG – u8_format, u8_deint, u8_decimate, u32_stat 1.0

u8_format: one of enum DVR_VIDEO_FORMAT (see dvr_protocol.h for details) [0=VIDFMT_NTSC, 1=VIDFMT_PAL] Note:
applicable to model 4011/4013 only. HD models use auto-detect input format.

u8_deint: enable/disable deinterlace. 0=interlaced capture, 1=deinterlace (interpolate)

u8_decimate: set frame skipping, 0=no skip, 1=skip every other frame, 2=encode every 3rd frame, 4=every 5th frame

Audio

Command
Reply data

Min. API
versionOpcode Data

CMD_SEL_AUDIO_INPUT u8_src 1.0

CMD_SET_VOLUME u8_chansel, u8_vol u32_stat 1.0

CMD_SET_MUTE u8_chansel, u8_mute u32_stat 1.0

CMD_SET_AUTOVOL u8_chansel, u8_agc u32_stat 1.0

CMD_GET_AUDIO_SETTINGS – u8: src, lvol, rvol, lmute, rmute, lagc, ragc, u32_stat 1.0

u8_src: one of enum DVR_AUDIO_INPUT (see dvr_protocol.h for details) [0=AUDIOIN_MIC, 1=AUDIOIN_LINE,
2=AUDIOIN_DIGITAL (SDI only)]

u8_chansel: one of enum DVR_AUDIO_CHAN (see dvr_protocol.h for details) [1=AUDIOCHAN_LEFT, 2=AUDIOCHAN_RIGHT,
3=AUDIOCHAN_BOTH]

 DVR control protocol 10

u8_vol: integer range 0 to 119. (It is actually gain, not a volume control, so start at 0 and increase as needed. Too large may result
in clipping and crackly audio.)

u8_mute: enable or disable audio channel, 0=unmute, 1=muted

u8_agc: automatic gain control, 0=disable, 1=enable

Incremental encoder

Command
Reply data

Min. API
versionOpcode Data

CMD_SET_ENCODER_COUNTS u8_chan, u32_counts u32_stat 1.0

CMD_GET_ENCODER_COUNTS u8_chan u32_counts, u32_stat 1.0

CMD_SET_ENCODER_SCALAR u8_chan, dbl_scalar u32_stat 1.0

CMD_USE_OFFBOARD_ENCODER u8_chan, u8_offboard u32_stat 1.0

CMD_GET_ENCODER_SETTINGS u8_chan dbl_scalar, u8_offboard, u32_stat 1.0

u8_chan: encoder channel 0 or 1. API version 1.2 adds channels 2 and 3 as virtual encoders (always offboard.)

u32_counts: raw encoder counts range 0 to 2^32-1

dbl_scalar: scale multiplier applied to raw encoder count before being displayed in overlays

u8_offboard: when set to 1, calling this function will disable internal encoders. All encoder count changes must then be done using
CMD_SET_ENCODER_COUNTS. Once set, the internal encoders cannot be re-enabled (until power-cycle.)

Menu system

Command
Reply data

Min. API
versionOpcode Data

CMD_MENU_DISPLAY u8_enable u32_stat 1.1

CMD_MENU_MOVE_CURSOR u8_up u32_stat 1.1

CMD_MENU_ENTER – u8_menuid, u8_executable, str_menutext, u32_stat 1.1

CMD_MENU_EXIT – u32_stat 1.1

u8_enable: 0=show menu interface, 1=hide menu interface (exit out all menus)

u8_up: 0=move cursor down, 1=move cursor up

u8_menuid, u8_executable, str_menutext: not implemented

 DVR control protocol 11

Status flags
A group of DVR status flags (u32_stat) is included at the end of all reply messages and in event messages of type
DVR_EVENT_STATUS_CHANGE:

Status flag Description Min. API version

DVR_STAT_EVENTS_ENABLED Asynchronous event reporting enabled 1.0

DVR_STAT_KBD_ATTACHED Keyboard detected 1.0

DVR_STAT_MEM_ATTACHED Memory stick mounted 1.0

DVR_STAT_MENU_OPEN Menu displayed 1.0

DVR_STAT_PLAY_PAUSED Playing paused 1.0

DVR_STAT_PLAYING Playing (may be paused or running) 1.0

DVR_STAT_VIEW_SNAPSHOT Snapshot is being viewed 1.0

DVR_STAT_RECORD_PAUSED Recording paused 1.0

DVR_STAT_RECORDING Recording (may be paused or running) 1.0

DVR_STAT_SERVER_SHUTDOWN DVR is preparing to shut down 1.0

DVR_STAT_VIDEO_LOCK Input video detected 1.0

DVR_STAT_WIFI_ENABLED WiFi enabled 1.0

DVR_STAT_WRITE_ERROR Disk full or write error 1.0

Example packets
The following examples show encoded command (c) and reply (r) packets for various DVR functions. Each packet is
expressed as a sequence of hexadecimal bytes and includes a packet delimiter (00) at the end. Note that in actual
operation, the DVR status flags (u32_stat) at the end of every reply packet will indicate the current DVR status and
therefore may differ from the values shown below.

Set overlay region 0 text to “Overlay text”
c: 01 02 3C 0D 4F 76 65 72 6C 61 79 20 74 65 78 74 02 FD 00
r: 02 40 01 01 01 01 02 C0 00

Position overlay region 0 top-left corner at (x, y) = (50, 100)
c: 01 02 3D 02 64 02 32 02 2D 00
r: 02 40 01 01 01 01 02 C0 00

Set channel 0 incremental encoder counts to 0x12345678
c: 01 02 78 06 78 56 34 12 74 00
r: 02 40 01 01 01 01 02 C0 00

Read channel 0 incremental encoder counts, which currently are 0x12345678
c: 01 02 79 02 87 00
r: 02 40 05 78 56 34 12 01 01 01 02 AC 00

 DVR control protocol 12

Client implementation
When developing code for a DVR client, software designers may use Sensoray's API or implement the DVR protocol
directly.

As a design aid for the latter case, Sensoray offers a basic serial client example (simple_sdvr_codec.c). This is
a complete working example except for low-level serial communication functions send_byte() and
recv_byte(), which must be supplied by the developer.

Architecture
The basic serial client example only has a command endpoint (no event endpoint), which is handled with a single
thread. Since there is no event endpoint, the client must poll the DVR to detect asynchronous DVR state changes:

More sophisticated clients can use multiple threads to efficiently monitor asynchronous DVR state changes in real
time, eliminating both the overhead and latency of polling. For example, this architecture is employed in Sensoray's
API for DVRs:

 DVR control protocol 13

API

A standard API is available which is compatible with all Sensoray DVRs. The API includes a complete set of DVR
management functions that implement DCP.

A DVR command is invoked by calling the associated API function; this causes an encoded command packet to be
sent to the DVR. Upon receiving the reply packet, the API function will decode and extract relevant information and
return it to the caller. A blocking function is provided to receive asynchronous event messages.

DVR command functions are thread-safe, thus ensuring conflict-free operation when multiple threads simultaneously
communicate with a DVR. This allows a remote client to, for example, upload overlay graphics in the background (via
low-priority thread) while maintaining GUI responsiveness (via higher-priority DVR control thread).

The API employs UDP sockets as endpoints. Each UDP datagram encapsulates one message. Consequently, the API is
inherently compatible with DVRs that communicate over Ethernet.

Interface bridge
Some DVR models communicate with remote clients via interfaces such as USB or serial COM, which don't employ
sockets. Sensoray provides client-side “bridge” software for these, which transparently redirect the API sockets to the
communication interface.

Example
This simple example shows how a remote client can use Sensoray's standard API and serial COM bridge to monitor
and control a DVR. Note that error checking is omitted for clarity; production software should always perform error
checking and handling.

#include "dvrapi.h"
#include "dvr_ser_bridge.h"

#define DVRID 0 // DVR identifier in range [0:31]
#define COMPORT 1 // Serial COM port identifier

int example(void)
{
 u32 stat; // DVR status
 char clip[100]; // video clip filename

 bridge_api_open(); // init bridge
 dvr_api_open(0); // init standard API
 bridge_dev_open(DVRID, COMPORT); // open bridge to DVR
 dvr_open(DVRID, NULL, 200); // enable client access to DVR

 dvr_record_start(dvrid, DVR_STORAGE_INTERNAL, // record a 5-second clip
 RECFMT_MP4, 2500, clip, sizeof(clip), &stat);
 printf("recording to %s\n", clip);
 sleep(5000);
 dvr_record_stop(DVRID, &stat);

 dvr_play(DVRID, DVR_STORAGE_INTERNAL, clip, &stat); // start playback
 dvr_api_close(); // shutdown and close API
 bridge_api_close(); // shutdown and close bridge
}

 DVR control protocol 14

Simple API
A simplified API is provided for use on microcontrollers where a full socket bridge may not be feasible. A small C
library is provided, with stub functions for opening/closing and reading/writing to the serial port. The packet
encoding/decoding functions work on memory in-place, and transmit to the serial port directly.

Modify dvr_simple.c and replace the "open_com_port", "close_com_port", "send_byte" and "recv_byte" functions to
use the microcontroller serial port. The current functions target Linux for testing and use /dev/ttyS0.

The simplified function interface in "dvr_simple.h" removes the "dvrid" and "status" parameters from most functions.
This assumes that the embedded system will be connected to only a single DVR board. The last status can still be
retrieved using the function dvr_get_last_status(). The simplified API is not thread-safe.

The event reporting is not implemented at this time.

Example
This simple example shows how a remote client can use Sensoray's standard API and serial COM bridge to monitor
and control a DVR. Note that error checking is omitted for clarity; production software should always perform error
checking and handling. Additionally, the client code should first check the API version and repeat until a valid
response is received, to verify that the DVR is powered up and ready for communication before sending further
commands.

#include "dvr_simple.h"

int main(int unused)
{
 int errcode;
 u32 status; // dvr status flags
 char filename[MAX_FILENAME_SIZE];

 open_com_port();

 dvr_record_start(BOTH, RECFMT_MP4, 0 /*default*/, filename);
 printf("recording started, filename=%s\n", filename);
 sleep(5); // record for 5 seconds
 dvr_record_stop();

 dvr_play_start(INTERNAL, filename);
 sleep(5); // play back full duration
 dvr_play_stop();

 close_com_port();
}

DateTime Conversion Functions
These functions allow conversion between the u32_clock values used in the DATETIME commands, and the
year/month/day/hour/minute/seconds in a Julian date.
static const unsigned int daysSinceJan1st[2][13] = {

{0,31,59,90,120,151,181,212,243,273,304,334,365}, // 365 days, non-leap
{0,31,60,91,121,152,182,213,244,274,305,335,366} // 366 days, leap

};

unsigned int julian_to_datetime(int year, int month, int day, int hour, int minute, int seconds)
{

int leap = !(year % 4) && (year % 100 || !(year % 400));
int yday = daysSinceJan1st[leap][month-1] + day-1;

 DVR control protocol 15

year -= 1900; // adjust to tm_year

return seconds + minute*60 + hour*3600 + yday*86400 +
(year-70)*31536000 + ((year-69)/4)*86400 -
((year-1)/100)*86400 + ((year+299)/400)*86400;

}

// https://stackoverflow.com/a/11197532
void datetime_to_julian(unsigned int datetime, int *year, int *month, int *day, int *hour, int
*minute, int *seconds)
{

unsigned long long sec;
unsigned int wday, quadricentennials, centennials, quadrennials, annuals;
unsigned int leap, yday, mday, mon;

// Re-bias from 1970 to 1601:
// 1970 - 1601 = 369 = 3*100 + 17*4 + 1 years (incl. 89 leap days) =
// (3*100*(365+24/100) + 17*4*(365+1/4) + 1*365)*24*3600 seconds
sec = datetime + 11644473600ULL;

wday = (sec / 86400 + 1) % 7; // day of week

// Remove multiples of 400 years (incl. 97 leap days)
quadricentennials = sec / 12622780800ULL; // 400*365.2425*24*3600
sec %= 12622780800ULL;

// Remove multiples of 100 years (incl. 24 leap days), can't be more than 3
// (because multiples of 4*100=400 years (incl. leap days) have been removed)
centennials = (sec / 3155673600ULL); // 100*(365+24/100)*24*3600
if (centennials > 3) {

centennials = 3;
}
sec -= centennials * 3155673600ULL;

// Remove multiples of 4 years (incl. 1 leap day), can't be more than 24
// (because multiples of 25*4=100 years (incl. leap days) have been removed)
quadrennials = (sec / 126230400); // 4*(365+1/4)*24*3600
if (quadrennials > 24) {

quadrennials = 24;
}
sec -= quadrennials * 126230400ULL;

// Remove multiples of years (incl. 0 leap days), can't be more than 3
// (because multiples of 4 years (incl. leap days) have been removed)
annuals = (sec / 31536000); // 365*24*3600
if (annuals > 3) {

annuals = 3;
}
sec -= annuals * 31536000ULL;

// Calculate the year and find out if it's leap
*year = 1601 + quadricentennials * 400 + centennials * 100 + quadrennials * 4 + annuals;
leap = !(*year % 4) && (*year % 100 || !(*year % 400));

// Calculate the day of the year and the time
yday = sec / 86400;
sec %= 86400;
*hour = sec / 3600;
sec %= 3600;
*minute = sec / 60;
sec %= 60;
*seconds = sec;

// Calculate the month
for (*day = mon = 1; mon < 13; mon++) {

if (yday < daysSinceJan1st[leap][mon])

 DVR control protocol 16

{
*day += yday - daysSinceJan1st[leap][mon - 1];
break;

}
}
*month = mon;

}

 DVR control protocol 17

	Functional overview
	Basic operation
	Event reporting
	Types
	Byte order and packing
	Packet structure
	Command messages
	Reply messages
	Event messages
	General
	Date/time
	Record
	Play
	Snapshot
	File system
	Video overlay
	Video adjust
	Video configuration
	Audio
	Incremental encoder
	Menu system

	Example packets
	Architecture
	Interface bridge
	Example

	Simple API
	Example

	DateTime Conversion Functions

