Model 2600 Family

Programming Guide

August 21, 2008

]
SEMNsSORAY

Sensoray Co., Inc.
7313 SW Tech Center Dr., Tigard, Oregon 97223
voice: 503.684.8005, fax: 503.684.8164, e-mail: sales@sensoray.com
WWW.Sensoray.com

Table of Contents

Introduction
S R 0 o1 RSP 1
1.2 DesCriptionccccceececceeceeceecie e 1
121 Block Diagram........cccceooeienenieieeieeeeeeeeeee 1
I nstallation
2.1 Executable Software Components............. 2
211 WINAOWS ... 2
22 I 1 ¢ 1 SRR 2
2.1.3 Other oo 2
2.2 Application SDK Components.........c........ 2
221 WINAOWS. ... 2
222 LINUX teittiiiiiiieie e 2

Fundamentals of Usage

3.1 Board Addressing......cccceeeveeveeneeseeneenienns 3
311 MM HaNdIES ... 3
312 IPAArESS. ..o 3

3.1.2.1 Settingthe MM’sIP Address.................... 3

3.2 Thread-Safetycccocvveieviiee e 3

3.3 Programming Examples........cceceviveneennnnne 3
3.3 1 DataTYPES...coooiieerierieriee e 4

34 Library LinKing....ccoccooevieevieeiiensieneeseenienns 4
341 WINAOWS....ooiiiiiieeeeeeeeee e 4
I 2 I 1 ¢ 11 S 4

3.5 Required Function Calls........cccccevveveennenne 4

Initialization and Status Functions
A1 OVEIVIEW oo e e e e eeennanes 5

4.2 Middleware Initialization and Shutdown .5

421 S26 _DriverOpen() «.cccoceeeeeeeeeeerreeereseseneennene 5
422 S26 DriverClose()coceoeeeereeerrenereneseseenenne 5
4.2.3 S26 _DriverVersion()ccoceeeeeeeeereeeniesienenenne 6
4.3 MM Initialization and Shutdown............... 6
431 S26 BoardOpen()ccoeeeereereereeneeeeeeeeeniennenne 6
4.3.2 S26 BoardCloSe()coereereeneeieeeereeeeeneeene 7
4.4 Statusand Controlcccoeeeeeveniiieenenenne 7
441 S26 ResetNEtWOrk().....coovverererenererenienene 7
442 S26 ReSetloM() ..covevereeieeieieie e 8
4.4.3 S26 _RegisterAlIOMS() ..cccceeeeerenerinereneen 8
4.4.4 Programming EXamples........c.ccoceoeienrienicnnenn 9

4441 WINAOWSccoiieieeieieeee e 9
AAA4.2 LiNUX oot 10
Transactions
5.1 OVEINVIBW o 12
5.2 Gateway Transaction Process................... 12
521 Thread Safety....cccoovoereniieiiee e 13
53 Transaction Buffers......cccccecvovneecennnnne 13
5.4 Blocking Behaviorccccoevvievcevieveenen, 13
55 EITOrS. e 13
55.1 Gateway Error Propagationcccceeeeennee. 15
552 Scopeof Erforscccoeeeeeeienenene e 15
55.3 Error Handlingccoceoereiiiinnne e 15
56 TiMEOULS. ..o 15
5.7 RELNES o 16

Gateway Transaction Control

B.1 OVEIVIBW ..ottt 17
6.2 Transaction Control Functions................. 17
6.2.1 S26_SChedOpen()ccovveevveerereeerereesresreene. 17
6.2.2 S26_SChedEXECULE()vveereereerereereereeane. 17
6.2.3 S26_SchedEXecuteStart()cooovvrvrreenne. 18
6.2.4 S26_SchedExecutelsResponded() 19
6.2.5 S26_SchedExecuteWait()ccooervererreeeeieenenn 19
6.2.6 S26_SchedExecuteFinish().......c.ccocevereeieenene 19

Gateway Action Scheduling

71 OVEINVIBW o 21
7.1.1 Performance Benchmarks...........ccoccoeeeennene. 21
7.1.2 Returned IOM Status.......ccccooevereiecneieienenn 21
7.1.3 Argument Lifetimecccocviniiiiineeee 21

7.1.3.1 Outgoing Data.......cccooeeerereenienienieneeeenns 21
7.1.3.2 Incoming Data........cccceeerereenienenienieeenns 21

7.2 Common IOM ActionS.......cccceeeevvreecinnenne 22
7.21 Type-SpecCifiC Errors......ccoinieniiineieeen 22
7.2.2 S26_Sched2600_ClearStatus()coeeeeeenen. 22
7.2.3 S26_Sched2600_GetAddress()........c.ceeueuene. 22
7.2.4 S26_Sched2600_ GetFirmwareVersion()....... 23
7.25 S26_Sched2600 |lomGetProductID()............ 23
7.26 S26_Sched2600_NOP() ...cccoerererereeerererinereenen. 24

Sensoray 2600 Programming Guide

Table of Contents

Table of Contents

7.3 Model 2601 Gatewaycccceveeeereeeennenne 24
7.3.1 Type-SpecCifiC Errors.......ccoovvienencncnencnne. 24
7.3.2 S26_Sched2601 Getinterlocks()ccoveeeeee. 24
7.3.3 S26_Sched2601_GetLinkStatus()........ccoceee. 25
7.34 S26_Sched2601_SetWatchdog()coereenee 26

74 Model 2608 Analog IOMcccoocvvieennee. 26
7.4.1 Type-SpecifiC Errors.......ccoovvieicencienceenne. 26
7.42 Analog INput TYPEScoerereererenencreeeeeee 26
7.4.3 Calibration ..o 27
7.44 Reserved EEPROM Locations...........ccoeuene.. 27
7.45 S26_Sched2608_SetTempUnits()........ccccveeee 27
7.4.6 S26_Sched2608_GetAins()ccceeerereeererennns 28
7.4.7 S26_Sched2608_GetAinTypes()c.cceerereees 29
7.4.8 S26_Sched2608 GetAout().......cccovereeererennas 29
7.4.9 S26_Sched2608_GetCalData()cceererenee 30
7.4.10 S26_Sched2608_ReadEeprom()..........ccccvee.e. 30
7.4.11 S26_Sched2608_SetAinTypes()......cccceererenees 31
7.4.12 S26_Sched2608_SetAout()......cccoervreeerererenas 31
7.4.13 S26_Sched2608_SetLineFreg()coceeererenee 32
7.4.14 S26_2608 WriteEeprom()........ccoceeverereruenne. 32

75 Model 2610 Digital IOMcccevvrienenee. 33
751 Type-SpeCifiC Errors.......ccoovvvienencicnnnenne. 33
7.5.2 S26_Sched2610_GetInputs()ccoveeveererennas 33
7.5.3 S26_Sched2610_GetModes()ccvervevererennas 34
754 S26_Sched2610_GetModes32()ccceererenee 34
75,5 S26_Sched2610_GetOutputs()cceererenee 34
7.5.6 S26_Sched2610_GetPwmRatio()ccccue... 35
7.5.7 S26_Sched2610_SetModes().........cveeveereruneas 35
7.5.8 S26_Sched2610_SetModes32().......c.ceeererenas 36
7.5.9 S26_Sched2610_SetOutputs()coeeeeerereneas 36
7.5.10 S26_Sched2610_SetPwmRatio()........cccceerenee 37

7.6 Model 2612 Analog IOMccccovvrieienne 37
7.6.1 Type-SpecCifiC Errors......ccoovniiniiineieieen 38
7.6.2 Anaog Input MOdES.......ccoceeireiiiieeee 38
7.6.3 S26_Sched2612 SetMode()cccoevererereeenen. 38
7.6.4 S26_Sched2612_SetVoltages()cocoeeeeenen. 39
7.6.5 S26_Sched2612 GetValues()cccoreeurune. 39
7.6.6 S26_Sched2612 RefreshData()........cceveeene. 40
7.6.7 S26 2612 RegisterZero().....ccooemerereeneeneenenn 40
7.6.8 S26_2612 RegisterSpan()c.cceeererereeereenen. 41
7.6.9 S26 2612 RegisterTare()ccocoreeeerererurereenene 42
7.6.10 S26_2612_ GetCalibratedValue().........cuuue.... 42
7.6.11 S26_2612 GetOffSet().....vveererereererererererienene 43
7.6.12 S26_2612 GetScale()eeevererererrererereriririenene 43
7.6.13 S26_2612 GetTare() ..ccccvvveeeererereereererereneenene 44
7.6.14 S26_2612_ SetCalibrations()cccoeervrvreenen. 44
7.6.15 S26_2612 SaveCalibrations()cccerveune. 45
7.6.16 S26_ 2612 RestoreCalibrations()................... 45

7.7 Model 2620 Counter IOMcccccvveeernne 46
7.7.1 Type-SpecCifiC Errors......ccooiieniieneneeee 46
7.7.2 S26_Sched2620_GetCounts().......ccocverveveunen. 46
7.7.3 S26_Sched2620_GetStatus()coeeerererereenen. 46
7.7.4 S26_Sched2620 SetControlReg()cevene.. 47
7.75 S26_Sched2620 SetCommonControl()......... 48
7.76 S26_Sched2620 SetModeEncoder().............. 48
7.7.7 S26_Sched2620 SetModeFregMeas() 49
7.7.8 S26_Sched2620_SetModePeriodMeas() 50
7.7.9 S26_Sched2620_SetModePulseGen() 50
7.7.10 S26_Sched2620_SetModePulseMeas() 51
7.7.11 S26_Sched2620 SetModePwmGen() 51
7.7.12 S26_Sched2620_SetMode()coevererereeenen. 52
7.7.13 S26_Sched2620_SetPreload()ccoceevereeenne. 54

7.8 Model 2650 Relay IOM.......ccccevvvveieeee 54
7.8.1 Type-SpecCifiC Errors......ccoovnieniiineieeene 54
7.8.2 S26_Sched2650_GetInputs()ceeeerererenen. 54
7.8.3 S26_Sched2650_GetOutputs()coeeeeeeeene. 55
7.84 S26_Sched2650_SetOutputs()ccoceerereeeenen. 55

7.9 Model 2652 Solid-State Relay IOM 56
7.9.1 Type-SpecCifiC Errors......ccoonieniiineieeene 56
7.9.2 S26_Sched2652_GetInputs()coceeeerererenen. 56
7.9.3 S26_Sched2652_GetModes()ccoerervrveunen. 56
7.9.4 S26_Sched2652_GetOutputs()coeeeeeeune. 57
7.9.5 S26_Sched2652_GetPwmRatio()ce..... 57
7.9.6 S26_Sched2652_SetModes().......ccccererererennen. 58
7.9.7 S26_Sched2652_SetOutputs()ccoceerereeeenen. 58
7.9.8 S26_Sched2652_SetPwmRatio().........cccue... 59

Sensoray 2600 Programming Guide

Table of Contents

Table of Contents

7.10 Model 2653 Solid-State Relay 10M
7.10.1 Type-Specific Errors........cccceevvvreenen.

7.10.2 S26_Sched2653_Getlnputs()
7.10.3 S26_Sched2653_GetModes()
7.10.4 S26_Sched2653 GetOutputs()
7.10.5 S26_Sched2653_GetPwmRatio()
7.10.6 S26_Sched2653_SetModes()
7.10.7 S26_Sched2653_SetOutputs()
7.10.8 S26_Sched2653_SetPwmRatio()

Comport Transaction Functions

......... 59 8.2 Configurationccccceeevevivevieevieenecnieennnnn..64
............ 59 821 S26_ComSetMOde()cccvvrvrerrerererieenererennnne. 64
............ 59 8.2.2 S26_ComsSetBreakChar()ccccocrvrveererereneen. 66
............ 60 8.2.3 S26_ComOPEN() ..coerververeererreeniesiereeeeereaens 07
............ 60 8.24 S26_COMCIOSE()...c.erururrerereriereereriruerererereeans B7
"""""" 61 8.3 Communication.........c.cccccevevrveienrriennenn....68
"""""" 2; 8.3.1 S26_ComSend()......ccceerererereererererirreenererenees 68
62 8.3.2 S26_COMRECEIVE()covrereerreererieieiererieienene 69

8.3.3 S26_ComGetRXCOUNL()...ccerverrererrerrereeennenn 70
8.3.4 S26_ComGELTXCOUNL() .evruervereererrerrerereenenne 70
____________ 64 84 CONtrol...ccooeeeeciiriieereseeeesese e 11
____________ 64 8.4.1 S26_ComStartBreak()......ccoeveeereereeneeseenennenne 71
8.4.2 S26_ComENABreak()......cccoerererererrerieriennenn 71
8.4.3 S26_ComClearFlags()ccoeeverrereererrerneriennenn 72
8.4.4 S26_ComFIUSh()....ccccoreriiiiiniiereeeee 72

Sensoray 2600 Programming Guide

Table of Contents

Chapter 1. Introduction

1.1 Scope

This document describes the contents and use of the distribution mediathat is supplied with boards belonging to the Sensoray
model 2600 product family.

1.2 Description

The 2600 family middleware is an executable software module that will interface one or more Sensoray Model 2601 Main
Modules (MMs) to aclient application program of your design. A rich set of middleware API functions provides access to all
resources on each MM, including its four asynchronous communication ports and 1/0 module gateway, aswell asto all 1/0
modules that are connected to the MMs. Any number of MM s may be concurrently interfaced by the middleware, limited only by
system resources.

Two versions of the executable middleware are supplied in the distribution media: one for Windows and one for Linux.

1.2.1 Block Diagram

The middleware consists of alibrary file that serves as an interface between the application program and Ethernet network. The
Windows version isimplemented as adynamic link library, S2600. DLL. The Linux version isastatic library, | i b2600. a.

Figure 1 illustrates the relationships between the middleware and related software components.

Figure 1: Block diagram of the software hierarchy.

Application Program

!

2600 M ddl ewar e

!
Socket API
A

v
Operating System

!

HARDWARE
ACCESS

Sensoray 2600 Programming Guide Introduction

Chapter 2. Installation

2.1 Executable Software Components

Because the middleware is dependent on a network socket API, a suitable socket interface must be installed and properly
configured. In addition, the middleware must be correctly installed on a 2600 client system as described in the following
sub-sections.

2.1.1 Windows
Dynamic link library file S2600. DLL must be located in either (1) the directory containing the application that usesit, or (2) in one
of the directories in the operating system’s DLL search path (e.g., “C: \ W NDOWB\ SYSTEM').

2.1.2 Linux

Library fileli b2600. a must be located in the linker’ s library search path. Y ou can either (1) locate the library in one of the
linker’ s default search path directories, or (2) explicitly specify the path of the library when invoking the linker. As an example of
the latter, you could locate the library in your application project’s directory and use a command like this to explicitly specify the
library path:

gcc -g -0 clientapp clientapp.o -L. -12600

In this case, the“- L. " indicates that the current directory isto be searched for library files, and the “- 1 2600” requests linking of
theli b2600. a library file.

2.1.3 Other

Source files are included in the SDK to enable you to port it to another operating system or cpu. Refer to the linux directory for a
reference design that can serve as a basis for porting.
2.2 Application SDK Components

Distribution media for the Model 2600 family includes source-code files and demo applications that are designed to accelerate the
development of your application program:

2.2.1 Windows
wi n2600. ¢ Functions used for dynamically linking to S2600. DLL. Compile and link this into any C/C++ application
that calls functionsin S2600. DLL.
wi n2600. h Windows-specific. Includethisinall C/C++ application modules that call functionsin S2600. DLL.
app2600. h Generic declarations. Thisfileisincluded inwi n2600. h.
s26app. h Windows-specific declarations. Thisfileisincluded in app2600. h.
$2600. bas Declarations required for Visual Basic applications. Include thisfilein any VB project that calls functions
in $2600. DLL. Note: thisis not compatible with VB.NET.
2.2.2 Linux
app2600. h Generic declarations. Includethisinall C/C++ application modulesthat call functionsin| i b2600. a.
s26app. h Linux-specific declarations. Thisfileisincluded in app2600. h.

Sensoray 2600 Programming Guide Installation

Chapter 3: Fundamentals of Usage

3.1 Board Addressing

3.1.1 MM Handles

Each Model 2601 board—which is also referred to as amain module, or simply MM—is assigned a reference number called a
handle. A handleisthelogical address of aMM. Many of the middleware functionsinclude the MM handle as an argument so
that the function calls will be directed to a specific MM. Thefirst MM is assigned the handle value 0. MM handles are numbered
sequentially up to the value N- 1, where N is the number of MMs in the system.

MM handles are not OS-allocated handles in the traditional sense, but rather are integer values that are assigned by the application
program. When a MM isfirst declared to the middleware by the application program, any valid, unused handle may be specified
for that MM. Once a handle has been assigned to a MM, it must not be used by any other MM.

3.1.2 |IP Address

In addition to the MM handle, which isthe logical address for aMM, each MM also has a physical address. The physical address
isthe Internet Protocol (IP) address at which the MM resides. A MM’ s physical address must always be specified to the
middleware in dotted decimal form (e.g., “192. 168. 3. 35").

3.1.2.1 SettingtheMM’s|P Address

A Windows utility program, cf g2601. exe, is supplied on the distribution media. This program enables you to examine and
changeaMM’s IP address. Follow these steps to program the MM’ s | P address:

1. Turn off power to the target MM.

2. Attach anull modem cable from the MM’s COM4 connector to any available comport on a PC.

3. Executethe utility program by typing “CFG2601 x” where x is the comport being used on the PC. For example, type
“cfg2601 2" if COM2 isbeing used on the PC.

4. Wait until the program informs you that it is waiting for the 2601 to be reset.
5. Apply power to the MM.
6. Using the program’s menu system, you may examine and change the MM’ s | P address.

It is strongly recommended that you assign | P addresses that are specifically reserved for private networks, such as10. X. X. X or
192. 168. X. X, to the MMs in your system.

3.2 Thread-Safety

With few exceptions, all middleware functions are thread-safe. Applications should be designed such that the thread-unsafe
functions will not be re-entered while in use by other threads or processes. Thisis usually not difficult to achieve in practice as
unsafe functions are associated with middleware initialization and shutdown.

3.3 Programming Examples

The C programming language has been used to code all programming examples. In most cases the programming examples can be
easily adapted to other languages.

Many of the examples specify symbolic constants that are defined in App2600. h, which can be found on the distribution media.

Sensoray 2600 Programming Guide Fundamentals of Usage

3.3.1 Data Types

Data values passed to or received from library functions belong to a small set of fundamental datatypes. All custom datatypes
employed by the API arelisted in Table 1. Datatypes are referenced by their C-language type names, as shown in the left column
of the table.

Table 1: Data types used by library functions

Type Name Description
us8 8-bit unsigned integer
s16/ul6 16-hit signed/unsigned integer
s32/u32 32-bit signed/unsigned integer

3.4 Library Linking

3.4.1 Windows

An application that calls functionsin $2600. DLL must first link to the DLL, and when terminated, an application must unlink from
the DLL so that resources used by the DLL will be released. The means by which DLL linking and unlinking isimplemented
depends on your development environment.

» Visual Basic: VB applications do not require callsto S26_DLLOpen() or S26_DLLA ose() because they automatically link
when any DLL function isfirst called, and automatically unlink when the application terminates. Instead, VB applications
must explicitly call S26_Dri ver Open() and S26_Dr i ver Cl ose() when starting and terminating, respectively.

» C/C++: applications must call S26_DLLOpen() to link to the DLL before calling any of its functions, and S26_DLLC ose()
when the application terminates. Note that these two functions are not part of the DLL; they are provided in the W n2600. c
module on the distribution media.

» Other: If you are using a development tool that does not perform automatic DLL linking, you must create functions
equivalent to S26_DLLOpen() and S26_DLLC ose() as shown in the w n2600. ¢ module on the distribution media.

3.4.2 Linux
An application that calls functionsin | i b2600. a must be statically linked to the library when the application is built.

For example, suppose you created a simple C-language program named app. ¢, which you have compiled to produce object file
app. o. Inaddition, you have previously located | i b2600. a in your project directory. Y ou can now execute the following
command line to link the library and produce the app executable.

gcc -g -0 app app.o -L. -12600

3.5 Required Function Calls

Some library functions are used universally in all applications, while others, depending on application requirements, may or may
not be used. All applications must, as a minimum, perform the following steps:

1. Call s26_bDri ver Open() toinitialize the middleware. This should always be the first middleware function executed by a
client application program. Windows only: thisis called automaticaly if you call S26_DLLOpen() .

2. For each MM, call S26_0OpenBoar d() to enable communication with the target MM.

3. For each MM, call S26_Reset Net wor k() toinitialize thetarget MM and verify that it is detected, fault-free and ready to
communicate. |If more than one Ethernet client will be communicating with the target MM, this function should be called
only once by adesignated “master” client ; all other clients should wait until the master has called this function, and then
they are free to communicate with the MM.

4. For each MM, call S26_Regi ster Al | | ons() to detect and register all 1/0O modules (IOMs) that are connected to the MM.

5. To guarantee proper cleanup upon application termination, call S26_Dri ver Cl ose() once. Windows only:
S26_Driver O ose() iscalled automatically if you call S26_DLLC ose() .

Sensoray 2600 Programming Guide Fundamentals of Usage

Chapter 4. Initialization and Status Functions

4.1 Overview

The functions described in this chapter are used to open, initialize and close the middleware library and all Main Modulesin the

2600 system.

4.2 Middleware Initialization and Shutdown

4.2.1 S26 DriverOpen()

Function:

Prototype:

Returns:

Notes:

Example:

Initializes the middleware.
u32 S26_DriverQpen(u32 NumWs);

Parameter Type Description
Numvivs u32 Number of MMs (2601 modules) in the system.

u32 containing an error code. One of the following values is returned:

Value Description
0 No errors were detected; middleware is open.
DRVERR _MALLOC The version number of the socket API isincompatible with the middleware, or TCP/IPis

not properly configured on the Ethernet client.

DRVERR_NETWORKCOPEN There was a problem when the network interface was opened. Any of the following
conditions can cause this error:
1. Theversion number of the socket API isincompatible with the middleware.
2. TCP/IPisnot properly configured on the Ethernet client.
3. Thesocket driver can't support the number of sockets required for communicating
with the number of MMs in the system.

DRVERR_CRI Tl CALSECTI ON There was a problem creating semaphores.

Errors can often be resolved by reconfiguring your network settings. In Windows, you can do this by changing the
TCP/IP settings through the network control panel.

Thisfunction allocates memory for and initializesthe MM middleware. S26_Dri ver Open() must be successfully
invoked before any other middleware functions are called. Each Ethernet client must call this function exactly
once. Multi-threaded applications must invoke this function one time before any other middleware functions are
called by any of the application’ s threads.

See section 4.4.4.

4.2.2 S26 DriverClose()

Function:
Prototype:
Returns:

Notes:

Closes the middleware.
voi d S26_DriverC ose();
None.

If the prior call to S26_Dri ver Open() was successful, this function must be called before the application closes to
ensure that the middleware shuts down gracefully and properly releases all resources. If an error code was returned

Sensoray 2600 Programming Guide Initialization and Status Functions

Example:

by S26_Dri ver Open() , however, the application should not call S26_Dri ver d ose() . Thismust be the last
middleware function called by the application.

See section 4.4.4.

4.2.3 S26 DriverVersion()

Function:
Prototype:
Returns:

Notes:

Example:

Returns a middleware version string.
const char * S26_DriverVersion(void);
Pointer to the middlware' s version string (e.g., “1.0.10").

Thisfunction isonly available in middleware version 1.0.10 or higher.

/1 Fetch and display m ddl eware version string.
printf("%", S26_DriverVersion());

4.3 MM Initialization and Shutdown

4.3.1 S26 BoardOpen()

Function:

Prototype:

Returns:

Notes:

Example:

Enables communications between an application and MM.
u32 S26_BoardOpen(u32 hbd, char *ClientAdrs, char *MVAdrs);

Parameter Type Description

hbd u32 MM handle. Use any value between 0 and N-1, where N is the number of MMsin the system.
Do not use a value that has already been used for another MM.

ClientAdrs char* Pointer to a null-terminated string that specifies the Ethernet client’s P address in dotted
decimal format. In the case of a multi-homed client, which is a client that has two or more
network interfaces (NICs), specify the IP address of the NIC that isto be used. This should be
set to zero if the client has only one NIC; this will cause the middleware to use the default NIC
for communicating with the MM.

MVAdr s char* Pointer to anull-terminated string that specifiesthe MM’ s IP address in dotted decimal format.
Thisisthe address at which the MM is programmed to respond.

u32 consisting of a set of active-high error bit flags. All flags will contain zero if the board was successfully
opened. If the board could not be opened, at |east one of the flags will be asserted:

Symbolic Name Description
ERR_BADHANDLE Aninvalid MM handle was specified.
ERR_BI NDSOCKET The MM’s network sockets could not be bound to the client’s | P address. Some operating

systems (e.g., Windows 98) do not support multiple NICs. In such systems, you must specify
zero as the address for your NIC.

ERR CREATESOCKET One or more of the MM’ s network sockets could not be created.

S26_Boar dOpen() registersa MM with the middleware so that communication between the application program
and the MM will be enabled. Each MM must be registered before calling any other functions that reference the
MM. In the context of this function, “opening” the MM is synonymous with registering the MM.

After opening the MM, the application may use the handle in all other functions that require a board handle.
Do not register aMM at two different handles. This can result in unpredictable behavior and may cause your
system to become unstable.

// Declare MM nunmber 0, client is not multi-honed.

Sensoray 2600 Programming Guide n Initialization and Status Functions

char MMAdrs[] = "10.10.10.1";

u32 errflags = S26_BoardOpen(0, 0, MVAdrs);
if (errflags)

{

}

/'l Handle error

Example: /1 Declare MM nunber O, client is multi-homed. Note that some operating
/'l systens do not support nore than one network card.
char ClientAdrs[] = "192.168.10.1";
char MMAdrs[] = "10.10.10.1";
u32 errflags = S26_BoardOpen(0, dientAdrs, MVAdrs);
if (errflags)
{

}
4.3.2 S26 BoardClosg()

Function: UnregistersaMM with the middleware.

/'l Handle error

Prototype: voi d S26_BoardCl ose(u32 hbd);

Parameter Type Description
hbd u32 MM handle.
Returns: None.
Notes: Thisfunction unregistersaMM that has been previously registered by S26_Boar dopen() . Each MM that has been

registered by S26_Boar dOpen() must be unregistered when it is no longer needed by an application. All open
MMs are automatically closed by S26_Dr i ver O ose(), S0 it isnot necessary to explicitly call S26_Boar dCl ose()
when shutting down your application.

S26_Boar dCl ose() seversthe middleware’s communication link between the application program and the MM,
and freesthe MM’ s board handle. Once freed, the board handle is available for assignment to the same MM or to
any other MM.

All IOMsthat have been registered for the target MM are unregistered. This can be useful if you will be
connecting IOMs to or disconnecting |OMs from the MM while the application is running.

S26_Boar dCl ose() does not alter the state of the MM. The MM’s communication watchdog interval remainsin
effect, and the gateway and comports continue any autonomous operations that are already in progress. Since all
communications will be severed between the client and the MM, the application should ensure that no gateway or
comport transactions are in progress when S26_Boar dCl ose() iscalled.

Example: // C ose MM nunber 0.
S26_BoardCl ose(0);

4.4 Statusand Control

4.4.1 S26_ResetNetwork()
Function: ResetsaMM and all connected IOMs and synchronizes communications between the client and the MM.
Prototype: u32 S26_Reset Network(u32 hbd);

Parameter Type Description
hbd u32 MM handle.

Sensoray 2600 Programming Guide Initialization and Status Functions

Returns:

Notes:

Example:

u32 value that indicates whether the reset operation was successful. Returns anon-zero valueif successful, or zero
if the reset operation failed.

This function attempts to reset the specified MM and all of its connected IOMs, then it verifies that the MM has
undergone areset by checking to seeif the MM’s HRST flag is set. When the MM reset is confirmed, the HRST
flag is cleared and the function returns a non-zero value to indicate that the MM is ready to communicate with the
Ethernet client. 1f the MM does not respond, or it fails any part of the synchronization sequence, azero valueis
returned to indicate the problem.

S26_Reset Net wor k() should be called after opening the MM and before calling any of the gateway or comport
transaction functions. In addition, this function should be called to resynchronize the client to the MM if the MM
experiences an unexpected reset operation resulting from a communication watchdog time-out.

Assuming operation on a private LAN, a delay of up to seven seconds can elapse before this function returns,
although the typical delay is much shorter. A delay of up to four seconds can occur if S26_Reset Net wor k() is
called while the MM is already undergoing areset in response to a network communication watchdog time-out.
The maximum delay will result if the MM is not reachable.

See section 4.4.4.

4.4.2 S26 Resetlom()

Function:

Prototype:

Returns:

Notes:

Example:

Executes an |OM module reset.

u32 S26_Resetlon(u32 hbd, | OWPORT lonPort, u32 nsec, u32 retries);

Parameter Type Description

hbd u32 MM handle.

| onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.
nsec u32 Maximum time, in milliseconds, to allow for the MM to reply.

retries u32 Maximum number of transaction retry attempts.

Error code as described in section 5.5. Zero isreturned if the operation was successful.

Thetarget IOM will immediately undergo areboot and it is unregistered with the middleware. The calling thread is
blocked while the reboot isin progress, and while communication is being established with the target module
following the module reset. 1f communication with the target module is successfully restored, the target module is
re-registered with the MM and the target’s RST flag is cleared.

It is strongly recommended that no other transactions be in progress for the target IOM’s MM while thiscall is
active. Other threads may resume transaction processing after the reset operation is finished and communication
has been restored with the target module.

Use S26_Reset Net wor k() instead of S26_Sched2600_Reset () in cases where more than one moduleisto be
reset or the MM must be reset.

/1 Reset the | OM connected to MM nunber 0, | OM port 6.
S26_Resetlom 0, 6, 1);

4.4.3 S26_Register Allloms()

Function:

Detects and registers all IOMs connected to aMM.

Sensoray 2600 Programming Guide n Initialization and Status Functions

Prototype: u32 S26_Regi sterAllloms(u3

2 hbd, u32 nsec,ul6 *nlons, ul6 *types, u8 *stat,u32 retries);

Parameter Type Description
hbd u32 MM handle.
nsec u32 Maximum time, in milliseconds, to allow for the MM to reply.
nl ons ulé * Pointer a 16-bit application buffer that will receive the number of
detected IOMs. Set to zero if the detected IOM count is not needed.
types ulé * Pointer to a 16* 16-bit array that will receive alist of the detected |IOM
types. types[i] will receive the model humber of the IOM that is
connected to IOM port number i . Set to zero if the list of detected
1OM typesis not needed.
st at u8 * Pointer to a 16-byte buffer that will receive the status bytes from all
detected IOMs. Set to zero if you are not interested in receiving |IOM
status info.
retries u32 Maximum number of transaction retry attempts.
Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.
Notes: S26_Regi ster Al l 1 ons() attempts to detect the presence of all IOMs that are connected to the specified MM.

Each detected IOM isthen queried to determine its type (i.e., model number), and its RST and CERR (but not any
reset to zero. Finally, the IOM types are registered to enable type-specific I/O

|OM-specific) status flags are

operations to be scheduled and executed.

If no errors are detected, nl ons receives the number of detected IOMSs, t ypes[] receivesalist of all detected IOM
types, and st at [] receives the status flags returned from all detected IOMs. ni ons will have avalue from 0 to 15,
while each element of t ypes[] will contain the [OM model number connected to the corresponding |IOM port, or
zeroif no IOM is present at the port. Set any of these pointer arguments to zero if the corresponding values are not

needed by the application.

This function must be called before any 1/0 operations are transacted with IOMs. |t should be called after opening
the MM and before calling any of the gateway transaction functions. In addition, this function should be called if
ected reset operation resulting from a communication watchdog time-out.

the MM experiences an unexp

Example: See section 4.4.4.

4.4.4 Programming Examples

4.4.4.1 Windows

int main()
{
u32 faults;
char MVAdrs[] = "10.10.10.1"
int Num ons;
ulé lonlist[16];
u8 |onttatus[16];

/1 Open the MM mi ddl ewar e.
if ((faults = S26_DLLOpen()
{
/1
/'l Handle error
/1

return faults;

}

) 1=0)

/1 Open MM nunber O and process any errors.

Sensoray 2600 Programming Guide

n Initialization and Status Functions

if(
{

}

/'l Reset MM number 0 and all of its connected |I/O nodul es.

(faults = S26_BoardOpen(0, O,

/1
/'l Handle error
/1

S26_DLLC ose();
return faults;

S26_Reset Network(0);

/1 Detect and register all 10Ovs connected to MM nunber
| ontt at us,

MVAdrs))

1=0)

S26_Regi sterAlllons(0, 1000, &Num ons, |onlist,

printf("% IOV were detected.\n");

/1

/1 Do all /0O operations and run the application’s main function
/1

/'l Close the 2600 system ni ddl ewar e.

S26_

retu

}
4.4.4.2 Linux

int main
{
u32
char
int
ulé
u8

DLLC ose();
rn 0;

0

faults;
MVAdrs[] = "10.10.10.1"
Num ons;
lonli st[16];
| oSt at us[16] ;

/1 Open the MM mi ddl ewar e.
(faults = S26_DriverQpen()) !'=0)

if(
{

}

/1 Open MM nunber

if(
{

}

/'l Reset MM number 0 and all of its connected |I/O nodul es.
S26_

/1
/'l Handle error
/1

return faults;

(faults = S26_BoardOpen(0, O,
/1

/1 Handle error

/1

S26_Driverd ose();
return faults;

Reset Network(0);

S26_Boar dCl ose()

0 and process any errors.

MVAdrs))

I=0)

/1 Detect and register all 10Ovs connected to MM nunber

S26_

prin

Regi sterAl I l oms(0, 1000, &Numl orms,
tf("% 1OV were detected.\n");

| onmli st

| ontt at us,

is called inplicitly.

Sensoray 2600

Programming Guide

Initialization and Status Functions

11

/1 Do all I/0O operations and run the application’s main function
/1

/1 Close the 2600 system ni ddl eware. S26_BoardClose() is called inplicitly.
S26_Driverd ose();
return O;

Sensoray 2600 Programming Guide Initialization and Status Functions

Chapter 5. Transactions

5.1 Overview

The majority of middleware functions are associated with gateway and comport transactions.

A comport transaction consists of sending to a MM a single Ethernet packet that contains a single comport command, and then
receiving and parsing the resulting Ethernet response packet.

A gateway transaction consists of sending to aMM asingle Ethernet packet containing one or more IOM action commands, and
then receiving and parsing the resulting Ethernet response packet. Gateway transaction functions are designed to insulate the
application programmer from the cumbersome details of network programming and packet parsing when conversing with the |lOM
gateway.

Aside from the programming simplifications, the gateway functions also help to optimize 1/0 system performance. By grouping
multiple IOM actions into a single transaction, your application will realize higher throughput and lower communication latency.
Because high throughput and low latency are hallmarks of the 2600 system, an extensive set of functions are provided for
controlling and scheduling IOM actions.

5.2 Gateway Transaction Process

Gateway transactions are implemented using a three-step process:

1. Begin anew transaction. Every transaction beginswith acall to S26_SchedOpen() , which returns a handle to an empty
“transaction object.”

2. Schedulethe actions. Once atransaction object has been obtained, zero or more IOM actions may be scheduled into the
transaction by means of the numerous action scheduling functions. For example, your application could call
S26_Sched2610_Set Qut put s() to program the 48 digital 1/0s on amodel 2610 digital I/O module, and then it could call
S26_Sched2608_Get Ai ns() to fetch the 16 digitized anal og inputs from a model 2608 analog 1/0 module. It isimportant
to understand that these functions only schedule the actions for later execution; the actions are not actually executed when
the action scheduling functions are called. Notethat it is not required for actionsto be scheduled into atransaction; it is
permissible to simply create the transaction object without scheduling any actions into it.

3. Executethetransaction. After all desired actions have been scheduled, acall to S26_SchedExecut e() causes all of the
scheduled actions to execute in a single transaction. Actions are executed in the same order they were scheduled. When
S26_SchedExecut e() returns, the 48 digital 1/Oswill have switched to their new states, al digitized analog input data will
be stored in an application buffer and, since it is no longer needed, the transaction object isreleased. If no actions were
scheduled into the transaction then the transaction object is simply released; in this case, no communication with the MM
will take place.

Here is some sample code that illustrates this process. Note that error checking, which should always be performed in robust
applications, is not shown here:

u8 douts[6] = { 0x01, 0x23, 0x45, 0x67, 0x89, OxAB }; // Desired Dl O states.
doubl e ains[16]; // Analog input values will be put here.

/1 Obtain a transaction object for MM number O.
void *x = S26_SchedOpen(0, 1);

/1 Schedul e sone 1/0O operations into the transaction object.

S26_Sched2608_Cet Cal Data(x, 1, 0); /1 Get 2608's calibration info.
S26_Sched2608_Cet Ains(x, 1, ains, 0); /1 Get 2608's anal og i nput data.
S26_Sched2610_Set Qut puts(x, 2, douts); // Set 2610's digital output states.

/'l Execute the transaction and rel ease the transaction object.
S26_SchedExecute(x, 1000, 0);

Sensoray 2600 Programming Guide Transactions

5.2.1 Thread Safety

All of the gateway transaction functions are thread safe, and it is permissible for multiple transactions to exist (and be in different
states) at the sametime. For example, your application could be partitioned into multiple threads (e.g., analog 1/0 thread, digital
1/O thread, serial communication thread) in which each thread asynchronously begins, schedules actions into, and executesits own
private gateway transactions. To guarantee thread safety in such a case, each transaction should be started, scheduled and executed
only by the thread that “owns’ that transaction. In general, a transaction object should not be shared by multiple threads.

5.3 Transaction Buffers

Each MM has fifteen internal transaction buffers which are kept in apool. This buffer pool is shared by all comport and gateway
transactions. A transaction buffer is dynamically allocated from the pool when a MM transaction begins (i.e., upon receipt of a
packet from an Ethernet client), and when the transaction is finished (i.e., aresponse packet has been sent to the client), the buffer
isreturned to the pool. Every client-side transaction is associated with a dedicated transaction buffer on the MM.

A maximum of fifteen transactions—in any combination of comport and/or gateway transactions—may be in progress at the same
time on one MM. For example, it is possible for aMM to process transactions on all four of its comports while simultaneously
processing up to eleven gateway transactions. This means that a single Ethernet client may run multiple threads and/or processes
in which each thread or process concurrently executes simultaneous transactions with asingle MM.

Multiple simultaneous MM transactions may involve more than one Ethernet client. For example, it is permissible for two
different Ethernet clients to simultaneously execute gateway transactions on asingle MM. Each of the fifteen possible
simultaneous MM transactions may be invoked by any arbitrary Ethernet client. The MM supports up to four Ethernet clients.

An error will occur on the MM if its transaction buffer pool is empty when atransaction begins. This can happen if apacket is
received from a client while the maximum possible number of simultaneous MM transactions are already in progress. In such
cases, the newest transaction will be dropped by the MM and no response will be sent to the client.

5.4 Blocking Behavior

Gateway transactions may be managed by either blocking or non-blocking functions. All comport transaction functions are
blocking operations.

In the case of a gateway transaction, execution of the calling thread is blocked by S26_SchedExecut e() until aresponse packet is
received from the target MM. Thisworkswell if your application has one or more dedicated gateway transaction threads because
other threads can run while the transacting threads are blocked. There may be situations, however, in which it isimpractical to
employ separate transaction threads. To support these cases, several middleware functions have been provided to enable
non-blocking gateway transactions.

To execute a non-blocking gateway transaction, call S26_SchedExecut eSt art () instead of S26_SchedExecut e() . Thiswill
initiate the transaction (i.e., send the Ethernet command packet to the MM) but will return immediately without waiting for a
response packet.

At any convenient time after calling S26_SchedExecut eSt art () , you may call S26_SchedExecut el sResponded() to determine
whether aresponse packet has arrived. If no response has arrived, the application may continue on with other tasks, calling
S26_SchedExecut el sResponded() again at any later times as needed. If and when all other tasks have been completed, the
application can call S26_SchedExecut eVai t () to block until aresponse packet has arrived.

When the application determines that a response packet has been received, it should call S26_SchedExecut eFi ni sh() to process
the response packet and rel ease the transaction object’ s resources.

55 Errors

With the exception of S26_SchedOpen() , all gateway and comport transaction functions return an enumerated error code. These
error codes are referenced by their symbolic names as defined in app2601. h. Error codes occupy the most significant three bytes
of au32 value. Some error types return extended information in the error code’ s least significant byte.

Sensoray 2600 Programming Guide Transactions

Transaction error codes have the following meanings:

Symbolic Name Com Description Error CodeL SB

GVWERR_BADVALUE Yes Anillegal argument value was specified. For example: Illegal value's position
* MM handleis greater than or equal to the number of declared MM’s. n thefunc_tlon
* |OM port number is outside the range O to 15, or Ox FF for the gateway. argument list.

* A channel number does not exist on the target IOM.
* A numerical value exceeds permitted limits.

GWERR_| OMCLOSED No An attempt was made to schedule an IOM action for an IOM that is not lom port number of the
open. This can happen if the application attempts to communicate with closed module.
an IOM that has not been registered by S26_Regi ster Al | | ons() .

GAERR_| OVERROR No One or more IOM communication error flags (CERR) are asserted. See lom port number of the
thel onSt at us[] array, which is populated by module for which
S26_SchedExecut e() , for details. CERR isfirst detected.

GAERR_| OWNORESPOND No Error(s) were detected in an MRsp within the gateway response packet. lom port number
The application should assume that all of the associated IOM’s scheduled associated with the
actions, aswell as all later actions that were scheduled for this and any MRsp.
other IOMs, failed to execute properly. This error can happen if:

* MRsp module identifier field does not contain the expected value, or
* MRsp payload length differs from that specified by the length field, or
* MRsp length field does not match the expected value.

GNERR_| OVRESET Yes The reset flag (RST) is asserted on the MM or one or more IOMs. If the lom port number of the
port number indicates an IOM (i.e., port number isin therange0x00 to ~ module for which RST
0xO0F) then you may analyze the contents of the | onSt at us[] array, isfirst detected.
which is populated by S26_SchedExecut e() , for details. If the port
number is 0x FF then the RST flag is asserted on the MM.

GAERR_| OVSPECI FI C No One or more |OM-specific status flags are asserted. See the lom port number of the
| onBt at us[] array, which is populated by S26_SchedExecut e(), module for which this
for details. isfirst detected.

GAERR_| OMI'YPE No An attempt was made to schedule an IOM action that is not supported by 1om port number
the registered IOM type (e.g., scheduling a digital 1/O action for an associated with the
analog |/0 module). scheduling error.

GWERR_MMCLOSED Yes An attempt was made to communicate with aMM that isnot open. The 0
application must first call S26_Boar dOpen() to open the MM for
communication.

GAERR_MWNORESPOND Yes The MM failed to respond, causing the client to time-out the transaction. 0
See section 5.5 for a discussion of transaction time-outs.

GWERR_PACKETSEND Yes The socket driver failed to transmit the gateway command packet.

GAERR_TOOLARGE Yes This can happen in two situations:

* The command packet’s size or the expected response packet’s size
exceeds the maximum UDP payload size supported by the MM (1KB).
* Too many MCmds are present in the gateway command packet. The
middleware permits a maximum of 100 MCmds per command packet.
If this error israised, try redistributing the transaction’ s actions among
multiple transactions.

GWERR_XACTALLOC Yes Allocation failure. GAERR_XACTALLOCwill be asserted by any gateway 0

transaction function that requires a transaction object in its argument list,
but isinstead passed a null (zero value) transaction object. This can
happen if more than eight comport and/or gateway transactions exist at
the sametime. See section 5.3 for more information.

In the above table, the “Com” column indicates whether the error type is applicable to comport transactions. Note that al of the
error types are applicable to gateway transactions.

Sensoray 2600 Programming Guide Transactions

5.5.1 Gateway Error Propagation

When any gateway transaction error has been detected, construction of the transaction’s command packet is terminated and all
subsequent gateway transaction functions will fail and return the last error value. Because of this “error propagation” behavior, it
is usually unnecessary to check for transaction errors after each gateway transaction functionis called. Instead, all transaction
errors can be caught when S26_SchedExecut e() returns.

Error propagation is extended to include S26_SchedOpen() , which returns zero if it fails to create a new transaction object.
Instead of checking for errors after calling S26_SchedOpen() , the application is permitted to schedule actions into the “void
transaction” and then execute the transaction asiif it had been successfully created. At any point during action scheduling into or
upon execution of avoid transaction, all scheduling and execution functions will return GAERR_XACTALLCOC to indicate the
transaction was not successfully created. For obvious reasons, no physical transaction will occur and no actions will be invoked.

5.5.2 Scopeof Errors

Each transaction keeps track of its own errors. When atransaction error is detected, it is known only to the transaction in which it
occurs. Transactions are not aware of errors that have occurred in other transactions. Transaction errors are “cleared”
automatically when S26_SchedExecut e() returns, because the associated transaction object is released. The underlying cause of
atransaction error, however, may still be pending after the transaction is finished. For example, an IOM’s reset flag will remain
asserted until explicitly reset by the client, even though the resulting GAERR _| OVRESET transaction error “disappears’ when the
transaction is finished.

5.5.3 Error Handling

In the cases of both comport and gateway transaction errors, the application’s error handler should first determine if any errors
were detected; this can be quickly done by testing the error code for a zero value. |If the value is not zero then the indicated error
must be processed by the error handler.

It is permissible to process the error code with a*“switch” statement because the error codes are enumerated values. If aswitch
statement is employed, however, the least significant byte of the error code must first be masked because it may contain additional
information about the error. Refer to the sample applications for examples of error handling.

Important: For each successful call to S26_SchedOpen() there must be a corresponding call to S26_SchedExecut e() , even if
gateway errors are detected before S26_SchedExecut e() iscalled. This ensuresthat resources allocated by S26_Schedpen()
will be released, thereby preventing memory leaks and other potential problems.

5.6 Time-outs

Some of the gateway transaction functions and all of the comport transaction functionsinclude a“msec” argument that specifies
the maximum number of millisecondsto wait for the MM to respond before declaring atime-out error (i.e., GAERR_MVNORESPOND).
When calling these functions, the application must specify an appropriate milliseconds value. The choice of the milliseconds value
depends on several factors:

» Network traffic. High network traffic, caused by activities such as video multicasting, can interfere with the timely delivery of
packets to and from the MM. To prevent this, it is best to dedicate a private LAN for the 2600 1/0O system.

» Router hops. Routers can lead to unpredictable latencies, especially when the other networks through which 2600 packets
flow have widely varying network traffic. A good policy isto eliminate routers from the 2600 communication path. If a2600
client requires the services of arouter, it is best to install two network interfacesin the client: one for the private 2600 network
and the other for the external network.

» CPU loading. A heavily loaded client-side CPU may introduce communication latency if it becomes compute-bound. The
solution to this problem is to reduce CPU loading or employ a faster CPU.

* Process priorities. Other network-related processes may “trump” the 2600 middleware' s network access requests if process
priorities are not set appropriately. The process that communicates with the 2600 system isusually classified as a “real-time”
process, and as such it should have relatively high priority. Note: high priority does not always guarantee real-time behavior,
especially with non real-time operating systems such as Windows.

» MM responsetime. Typically, only one transaction isin progress for a particular comport at any given time. Asaresult,
comport transaction times depend mostly on packet sizes and are thereforerelatively predictable. Gateway transactions, on the
other hand, are less predictable. Thisis because a gateway transaction time depends not only on its command and response

Sensoray 2600 Programming Guide Transactions

packet sizes, but also on how many other gateway transactions are already in progress. “Simultaneous’ gateway transactions
are queued by the MM and executed in the order in which their command packets are received at the MM.

A nmsec value should be chosen that is at least as long as the worst-case transaction time after allowing for all of the above factors.
On the other hand, the value should be sufficiently short to ensure timely detection of a gateway transaction failure. The
programming examples in this manual use a somewhat arbitrary value of 1000 milliseconds. In most cases, thisis far more than
enough time for atypical private LAN that imposes no routers between the client and the MM, yet it ensures that a transaction
time-out will be detected within one second.

In addition to communication latencies, transaction time-outs can also be caused by dropped packets or situations in which
multiple Ethernet clients are attempting to run too many simultaneous transactions.

5.7 Retries

A transaction retry is performed by re-sending a transaction’s command packet and waiting for its response packet to arrive, or a
response timeout, whichever comesfirst. If the MM did not previously receive the command packet, it will execute the commands,
and both cache and transmit the response packet. If the MM recognizes the command packet as being a duplicate of a previously
executed command packet, it will drop the packet (i.e., not execute the commands) and instead send the corresponding response
packet that was previously sent and cached. This retry mechanism relieves the client application of the responsibility for
communication error correction, and makes possible recovery from certain types of errors that would otherwise be unrecoverable
(e.g., reading data from a comport).

All gateway and comport transactionsinclude ar et ri es value that is specified in one of the middleware function calls associated
with the transaction.

Whenretri es isset to apositive number, the middleware will automatically retry the transaction if it doesn’t receive areply from
the MM within the transaction’s specified time-out interval. Transaction retries will repeat until areply is received from the MM
or the specified number of retries have been attempted. If the maximum number of allowed retries have been attempted and there
is still no response from the MM, the transaction will fail with GAERR_MVNORESPOND returned.

Retries are disabled whenret ri es is set to zero. In this case, the transaction will fail with GAERR_MVNORESPOND upon the first
MM response time-out.

The worst-case transaction time equal s the time-out interval timesr et ri es. Thisisthetotal elapsed time the application will wait
for atransaction to complete in the event of aMM communication failure.

A retries value should be chosen based on your network error rate, which in turn depends on whether collisions are possible
(e.g., your installation uses hubsinstead of switches), cable lengths, electrical noise, and other factors. The programming examples
in this manual use avalue of 1, which is sufficient for most private LAN environments.

Sensoray 2600 Programming Guide Transactions

Chapter 6. Gateway Transaction Control

6.1 Overview

The functionsin this section are used to initialize and execute gateway transactions.

6.2 Transaction Control Functions

6.2.1 S26_SchedOpen()

Function:

Prototype:

Returns:

Notes:

Example:

Begins a new gateway transaction.

voi d *S26_SchedOpen(u32 hbd, u32 retries);

Parameter Type Description
hbd u32 MM handle.
retries u32 Maximum number of transaction retry attempts.

Handle to a new gateway transaction, or zero if the transaction could not be created.

S26_SchedOpen() startsthe construction of anew gateway transaction. The new transaction will be empty (i.e., it
will have no scheduled IOM actions). After successfully calling this function, IOM actions can be scheduled into
the transaction, and when all desired actions have been scheduled, the transaction may be executed.

Except for GAERR_MVICLOSED, all transaction errors are negated in the new transaction. The GAERR_MVICLOSED error
will be asserted if the target MM is closed when the transaction is created. If the MM is open, GAERR_MMCLOSED
will be negated and it will be possible to schedule actions into and execute the transaction.

Important: To prevent resource leaks and other potential problems, S26_SchedExecut e() or
S26_SchedExecut eFi ni sh() must be called for each transaction that is successfully started by
S26_SchedOpen() . Thismust be done even if gateway errors were generated while scheduling IOM actions into
the transaction and the errors are detected before the transaction is executed. There is no need, however, to call
either S26_SchedExecut e() or S26_SchedExecut eFi ni sh() if S26_Schedpen() failsto create anew
transaction, although there is no harm in doing so.

See the example in section 6.2.2.

6.2.2 S26_SchedExecute()

Function:

Prototype:

Returns:

Notes:

Executes a transaction.

u32 S26_SchedExecute(XACT x, u32 msec, u8 *lonfStatus);

Parameter Type Description
X void * Transaction handle obtained from S26_SchedQpen() .
nsec u32 Maximum time to wait for the gateway response packet, in milliseconds, before

declaring a time-out.

| oSt at us ug * Pointer to a 16-byte buffer that will receive the status bytesfrom all IOMs. Set to zero
if you are not interested in receiving IOM status info.

Error code as described in section 5.5. Zero isreturned if the operation was successful.

S26_SchedExecut e() sends the transaction’s gateway command packet to the MM and waits for the MM to reply
with a gateway response packet. The calling thread is blocked until either aresponse packet is received or the

Sensoray 2600 Programming Guide Gateway Transaction Control

time-out interval has elapsed, whichever occursfirst. When it isreceived, the response packet is checked for errors
and, if no errors are detected, all of the embedded IOM responses are extracted from the response packet and
copied to their target application buffers.

This function is the equivalent of calling, in sequence, S26_SchedExecut eSt art (), S26_SchedExecut eWai t ()
and S26_SchedExecut eFi ni sh() .

Important: The specified transaction object will no longer exist and the transaction handle will no longer be valid
when this function returns. After calling this function, do not attempt to use the transaction handle again in calls to
action scheduling functions.

If I onfSt at us isnon-zero (i.e., it pointsto a 16-byte application buffer), this buffer will be populated with the status
bytesreceived from all 16 IOMs. One status byte is populated for each IOM; for example, | onst at us[14]
contains the status byte for the IOM that is connected to the MM’s 1OM port number 14. A status byte will be set
to zero in cases where no IOM is connected to the port or no actions have been scheduled for the IOM.

Multiple status bytes will be received from an IOM if two or more module commands (M Cmds) are addressed to
the same |OM within asingle transaction. This can happen for various reasons:

U Two actions scheduled for an IOM are separated by an action that is scheduled for a different IOM. In this
case the new MCmd isimplicitly forced by the application program, because a new MCmd is required
whenever an action is scheduled for an IOM that differs from the previous action’s |OM.

U A new MCmd is automatically forced by an action that would have overflowed the IOM’ s response buffer.
This causes the IOM response buffer to be flushed before the new action response is generated.

0 A new MCmd is automatically forced by an action that would have exceeded the maximum legal MCmd
size.

U A new MCmd isautomatically forced if status bits that are masked off in the current MCmd are regarded as
relevant by a scheduled action. For example, S26_Sched2600_C ear St at us() may mask the RST status bit
so that it will not generate an error, but most other actions, such asS26_Sched2600_1 onGet Product 1 D() ,
treat the RST bit asrelevant. Consequently, a new MCmd will be automatically started between sequential
callsto S26_Sched2600_Cl ear St at us() and S26_Sched2600_I onGet Pr oduct 1 D() .

The status byte that iswrittento 1 onSt at us[] for each IOM isformed by logically or’'ing together the status
bytes, after masking non-relevant bits, that are received from each of the IOM’s MCmds. Asaresult, each of the
application’s IOM status bytesis the consolidation of all relevant status information from all actions with the
associated IOM.

Example: /| Execute some |/O operations on MM nunmber O, and its connected | Ovs.

u8 status[16]; /1 Al 1OMstatus bytes will be put here.
u32 gwerr; /1 Transaction error code will be put here.

/Il Create a new transaction for MM nunber O.
void *x = S26_SchedOpen(0, 1);

/1

/1 ToDo: Schedule the desired I/O operations into the transaction ...
/1

/'l Execute the transaction. Report if errors were encountered.

if ((gwerr = S26_SchedExecute(x, 1000, status)) !=0)
printf("Transaction error: %\ n", gwerr);

6.2.3 S26_SchedExecuteStart()

Function: Starts a transaction execution.

Sensoray 2600 Programming Guide Gateway Transaction Control

Prototype:

Returns:

Notes:

Example:

u32 S26_SchedExecuteStart(XACT x);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

Error code as described in section 5.5. Zero isreturned if the operation was successful.

S26_SchedExecut eSt art () sends the transaction’s gateway command packet to the MM and then returns
immediately. It can be called in place of S26_SchedExecut e() by threads that must not block while transactions
arein progress.

After calling this function, S26_SchedExecut el sResponded() can be called in a non-blocking polling loop to
determine when the gateway response packet has been received and isready for processing. Alternately,
S26_SchedExecut eWai t () can be called to block the calling thread until the response packet isreceived. When the
response packet has been received, S26_SchedExecut eFi ni sh() can be called to complete the transaction.

See section 6.2.6.

6.2.4 S26_SchedExecutel sResponded()

Function:

Prototype:

Returns:

Notes:

Example:

Determines whether a gateway response packet has been received.
u32 S26_SchedExecut el sResponded(XACT x);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

True (1) if a packet has been received, or false (0) if no packet has been received.

This function indicates the availability of areceived gateway response packet for the specified transaction. It can
be called by threads that must not block while transactions are in progress. The specified transaction should
already be executing as aresult of aprior call to S26_SchedExecut eStart () .

See section 6.2.6.

6.2.5 S26_SchedExecuteWait()

Function:

Prototype:

Returns:

Notes:

Example:

Waits for a gateway response packet to be received.

u32 S26_SchedExecut eVait (XACT x, u32 nsec);

Parameter Type Description
X void * Transaction handle obtained from S26_SchedQpen() .
nsec u32 Maximum time to wait for the gateway response packet, in milliseconds, before

declaring a time-out.

Error code as described in section 5.5. Zero isreturned if the operation was successful.

This function waits for areceived gateway response packet or atime-out, whichever occursfirst. The calling
thread will block until a packet isreceived or the receive times out. The specified transaction should already be
executing as aresult of aprior call to S26_SchedExecut eStart ().

See section 6.2.6.

6.2.6 S26_SchedExecuteFinish()

Function:

Processes a received gateway response packet.

Sensoray 2600 Programming Guide Gateway Transaction Control

Prototype: u32 S26_SchedExecut eFi ni sh(XACT x, u8 *lonStatus);

Parameter Type Description
X void * Transaction handle obtained from S26_SchedQpen() .
| oSt at us ug8 * Pointer to a 16-byte buffer that will receive the status bytesfrom all IOMs. Set to zero

if you are not interested in receiving IOM status info.

Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.

Notes: This function assumes that a gateway response packet has already been received for the specified transaction. An
error code will be returned if areceived packet is not available for processing. The response packet is checked for
errors and, if no errors are detected, all of the embedded |OM responses are extracted from the response packet and
copied to their target application buffers.

The specified transaction object will no longer exist and the transaction handle will no longer be valid when this
function returns. After calling this function, do not attempt to use the transaction handle again in calls to action
scheduling functions.

Example: /1 Do sone |/O operations on MM nunber 0 and its connected I1OVs in a non-bl ocking way.

u8 status[16]; /1 Al 1OMstatus bytes will be put here.
u32 gwerr; /1 Transaction error code will be put here.

/Il Create a new transaction for MM nunber O.
void *x = S26_SchedOpen(0, 1);

/1
/1 ToDo: Schedule the desired I/O operations into the transaction ...
/1

/1l Start the transaction executing.
S26_SchedExecuteStart(x);

/1 Do sone other things while the transaction executes.
while (!S26_SchedExecut el sResponded(x))

{
/1
/1l ToDo: Do some other things ...
/1
if (no_nore_things_to_do)
{
/1 Wait for transaction response packet, then exit the | oop.
S26_SchedExecut eWait (x, 1000)
br eak;
}
}

/'l Process the transaction response packet. Report if errors were encountered.
if ((gwerr = S26_SchedExecut eFi ni sh(x, status)) !'=0)
printf("Transaction error: %\ n", gwerr);

Sensoray 2600 Programming Guide Gateway Transaction Control

Chapter 7. Gateway Action Scheduling

7.1 Overview

This chapter details all of the functions that are used to schedule 1/0 actions on IOMs and the gateway. Except where noted, all of
these functions assume that a gateway transaction has been previously opened and is ready to schedule IOM actions.

7.1.1 Performance Benchmarks

Timing benchmarks are specified in all of the scheduling function descriptions. These benchmark times are nominal values that
may be used to estimate gateway transaction times. Benchmarks are conservatively rated and, as aresult, applications will tend to
exhibit better performance than indicated by the benchmarks.

Each published benchmark specifies the time required for execution of a specific 1/O action. The total gateway transaction time
may be estimated by summing the action execution benchmark times, and then adding overhead for protocol stack transit, packet
time on the wire, etc. Since the overhead time isinfluenced by elementsthat are not under control of the middleware, the latencies
associated with these overhead items are not specified in this document.

Important: Benchmark times are conservatively rated, but they are not worst-case values.

7.1.2 Returned |IOM Status

A status byte, consisting of a set of bit flags, is returned by an IOM when it executes a scheduled IOM action. Two of the bit flags,
STATUS_RST and STATUS_CERR, are common to all IOM types. If these flags are asserted by any IOM, atransaction error of type
GERR_| OVRESET Or GAERR_| OVERRCR, respectively, will be generated.

In addition to the common bit flags, some IOM types support type-specific bit flags. These special flags are described in the
“Type-Specific Errors’ subsection near the beginning of each IOM reference section. If any of the type-specific bit flags are
asserted by any |IOM, atransaction error of type GAERR | OVBPECI FI Cwill be generated.

7.1.3 Argument Lifetime

Most scheduling functions have arguments that specify data that isto be exchanged with atarget module. Examples of this
include the value to be written to an analog output channel (outgoing data), or a pointer to a buffer that will receive analog input
data (incoming data). Each such argument has a life expectancy that depends on whether the associated data is outgoing or
incoming.

7.1.3.1 Outgoing Data

All scheduling functions copy outgoing data to private internal storage before returning. Consequently, outgoing datais no longer
needed and thus may be permitted to change value or go out of scope after the scheduling function returns. For example, this code
islegal becausest at es is copied by the scheduling function:

/1 Program solid state relay control outputs on a nodel 2652 | OM

u8 states = 0x55; /1 Desired SSR output states.

void *x = S26_SchedOpen(0, 1); /1 Obtain a transaction object.
S26_Sched2652_Set Qutputs(x, 9, &states); // Schedule the action.

states = OxAA; /1 1T'S OK TO CHANGE THE VALUE NOW!!!
S26_SchedExecute(x, 1000, 0); /] Execute the transaction.

7.1.3.2 Incoming Data

The scheduling functions handle incoming data by scheduling a callback for each incoming data argument. All scheduled
callbacks will execute when the associated transaction executes. Accordingly, buffersthat will receive incoming data must remain
in scope until the transaction is completed. This code exampleillustrates a violation of this requirement:

/1 Fetch solid state relay inputs froma nodel 2652 | OM
voi d Schedul eReadSSR(void *x)

{

Sensoray 2600 Programming Guide Gateway Action Scheduling

u8 st ates; /] Buffer that will receive SSR states.
S26_Sched2652_GCet I nputs(x, 9, &states); /'l Schedul e the action.

}

void *x = S26_SchedOpen(0, 1); /1 Obtain a transaction object.

Schedul eReadSSR(x); /'l states NO LONGER EXI STS UPON RETURN !!!
S26_SchedExecute(x, 1000, 0); /] Execute the transaction. ERROR!

In the above example, st at es has been designated as the buffer that will receive incoming data. Unfortunately, st at es will cease
to exist when Schedul t ReadSSR() returns, resulting in an error when the transaction executes.

7.2 Common |OM Actions

The functionsin this section are used to schedule common IOM actions that apply to al I0OM types, and in most cases, to the
gateway aswell. Note that these functions only schedule actionsinto atransaction; they do not cause the actions to be immediately
executed. Usage of these functions is not dependent on the target IOM being any particular type, nor isit necessary for the |IOM
type to be registered for the referenced IOM port.

7.2.1 Type-SpecificErrors

In addition to the common bit flags (STATUS_RST and STATUS_CERR), some |OM types have type-specific bit flags. These special
flags may be asserted upon execution of any of the actions listed in this section. If any of these flags are asserted by any IOM, a
transaction error of type GAERR_| OMSPECI FI C will be generated.

7.2.2 S26_Sched2600_Clear Status()

Function: Schedules the resetting of one or more status bits for an IOM or the gateway.

Prototype: u32 S26_Sched2600_Cl ear St at us(XACT x, | OWORT |onPort, u8 BitMsk);

Parameter Type Description
X void * Transaction handle obtained from S26_SchedQpen() .
| onPor t u8 The IOM port number (on the MM) to which the target IOM is connected, or Ox FF if
the gateway is the target.
Bi t Mask u8 Specifies the status bits that are to be reset to zero.
Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.

Benchmark: 0.8 msfor IOMs, or 0.1 msfor the gateway.

Notes: This function schedules a Reset FI ags action, which will reset to zero the specified bit flags in the target IOM’ s
status byte. Refer to the Reset Fl ags action in the Model 2600 Family Instruction Manual for more information.

Example: /1 Clear the RST flag on the | OM connected to MM nunber 0O, | OM port 6.
void *x = S26_SchedOpen(0, 1);

S26_Sched2600_Cl ear St atus(x, 6, STATUS RST);
S26_SchedExecute(x, 1000, 0);

7.2.3 S26_Sched2600 GetAddress()
Function: Schedules the fetching of an IOM’ s address shunt settings.

Prototype: u32 S26_Sched2600_GCet Address(XACT x, | OMPORT lonPort, u8 *adrs);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

| onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.
adrs ug8 * Pointer to a 1-byte application buffer that is to receive the address.

Sensoray 2600 Programming Guide Gateway Action Scheduling

Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.
Benchmark: 0.8 ms.

Notes: Some |OM types have provision for installing address shunts. These shunts enabl e the system integrator to specify
an address for the module, with avalue in the range 0 to 15 decimal. This function can be used to read the address
shunts from IOMs that include this hardware feature.

Example: /1 Fetch the address shunt settings from MM nunmber 0, |OM port 6.
u8 shunts;
void *x = S26_SchedOpen(0, 1);
S26_Sched2600_GCet Address(x, 6, &shunts);
S26_SchedExecute(x, 1000, 0);
printf("Shunts = %\ n", shunts);

7.2.4 S26_Sched2600 GetFirmwareVersion()
Function: Schedules the fetching of the firmware version number from an IOM or the gateway.

Prototype: u32 S26_Sched2600_GCet Fi r nwar eVer si on(XACT x, | OMPORT lonPort, ul6 *Version);

Parameter Type Description
X void * Transaction handle obtained from S26_SchedQpen() .
| onPor t u8 The IOM port number (on the MM) to which the target IOM is connected, or Ox FF if

the gateway is the target.

Ver si on ulé * Pointer to a 16-bit application buffer that will receive the target IOM’ s version number
astwo decimal values. Thefirst byteisthe major version number. The second byteis
the minor version number.

Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.
Benchmark: 0.9 msfor IOMs, or 0.1 msfor the gateway.

Example: /1 Fetch the IOMfirmware version nunber from MM nunber O, |1OM port 6.
u8 vers|2];
void *x = S26_SchedOpen(0, 1);
S26_Sched2600_Cet Fi r mvar eVersi on(x, 6, &vers);
S26_SchedExecute(x, 1000, 0);
printf("I OMversion nunber = %. %d\n", vers[O0], vers[1]);

Example: /1 Fetch the firnware version nunber from MM nunber O.
u8 vers|2];
void *x = S26_SchedOpen(0, 1);
S26_Sched2600_Cet Fi r mvar eVer si on(x, MODI D_GATEWAY, &vers);
S26_SchedExecute(x, 1000, 0);
printf("MM version number = %l. %\ n", vers[O0], vers[1l]);

7.25 S26_Sched2600 |omGetProducti D()
Function: Schedules the fetching of the model nhumber from an IOM or the gateway.

Prototype: u32 S26_Sched2600_I onGet Product | D{ XACT x, | OVMPORT lonPort, ul6 *ProductlID);

Parameter Type Description
X void * Transaction handle obtained from S26_SchedQpen() .
| onPor t u8 The IOM port number (on the MM) to which the target IOM is connected, or Ox FF if

the gateway is the target.

ProductID ulé * Pointer to a 16-bit application buffer that is to receive the product identifier. The
product identifier is always expressed as a decimal value.

Sensoray 2600 Programming Guide Gateway Action Scheduling

Returns:
Benchmark:

Notes:

Example:

Error code as described in section 5.5. Zero isreturned if the operation was successful.

0.9 msfor IOMs, or 0.1 msfor the gateway.

The returned value indicates the model humber of the target module. For example, the decimal value 2652 is
returned by the Model 2652 Solid State Relay IOM. The value 2601 is returned when the gateway is the target
module.

/'l Fetch the | OM nodel nunber from MM nunber 0, |OM port 6.
ul6é nodel num

void *x = S26_SchedOpen(0, 1);

S26_Sched2600_I omGet Product | D(x, 6, &model num);
S26_SchedExecute(x, 1000, 0);

printf("Mdel number = %\ n", nodel nhum);

7.2.6 S26_Sched2600_Nop()

Function:

Prototype:

Returns:
Benchmark:

Notes:

Example:

Schedules a “no-operation” action for an IOM or the gateway.

u32 S26_Sched2600_Nop(XACT x, |OVWPORT lonPort);

Parameter Type Description
X void * Transaction handle obtained from S26_SchedQpen() .
I onPor t u8 The IOM port number (on the MM) to which the target IOM is connected, or Ox FF if

the gateway is the target.

Error code as described in section 5.5. Zero isreturned if the operation was successful.

0.7 msfor IOMs, or 0.1 msfor the gateway.

S26_Sched2600_Nop() may be used to acquire IOM status when no other actions are required.

/1l Fetch I OM status from MM nunber 0, |OM port 6.
u8 status[16];

void *x = S26_SchedOpen(0, 1);
S26_Sched2600_Nop(x, 6);

S26_SchedExecute(x, 1000, status);

printf("IOM 6 status = %\ n", status[6]);

7.3 Model 2601 Gateway

The functionsin this section are used to schedule gateway actions on aMM. These functions are applicable only to Model 2601
MMs. Any attempt to call these functions for IOMswill result in a GAERR_| OMTYPE transaction error. Note that these functions
only schedule actions into a transaction; they do not cause the actions to be immediately executed

7.3.1 Type-SpecificErrors

The gateway employs only the STATUS_RST flag. It does not have a STATUS_CERR flag, nor does it have any type-specific flags. If
the gateway’s STATUS_RST flag is asserted, a transaction error of type GAERR | OVRESET will be generated and the error code’s
least significant byte (which indicates the module in which the error was detected) will contain MODI D_GATEWAY.

7.3.2 S26_Sched2601 GetlInterlocks()

Function:

Schedul es the fetching of the MM’ s power interlock status.

Sensoray 2600 Programming Guide Gateway Action Scheduling

Prototype:

Returns:
Benchmark:

Notes:

Example:

u32 S26_Sched2601_Cet |l nterl ocks(XACT x, u8 *LockFlags);

Parameter Type Description
X void * Transaction handle obtained from S26_SchedQpen() .
LockFl ags ug8 * Pointer to a 1-byte application buffer that isto receive the interlock power state flags.

Each bit is associated with an interlock channel number. For example, bit 4 is
associated with interlock channel 4. A bit flag is set to one to indicate that the
interlock input has applied power, or zero to indicate that the interlock input has no

applied power.

Error code as described in section 5.5. Zero isreturned if the operation was successful.

0.1 ms.

The MM includes two connectors for interlock power distribution. One connector receives power from up to six
interlock contacts, while the other connector serves as a daisy-chain to distribute the interlock power to IOMs.

Each interlock signal is called an interlock channel .

Every interlock channel occupies one circuit in each of the MM’ s interlock power connectors. In addition, each
channel isrouted to a metering circuit that enables the MM to monitor the channel’ s voltage level. If achannel’s
interlock contact is closed, the interlock will supply voltage to the input connector, which in turn will convey the

voltage to the output connector and metering circuit.

/!l Fetch the interlock status from MM nunber O.
u8 fl ags;

u8 mask;

int i;

void *x = S26_SchedOpen(0, 1);
S26_Sched2601_CetlInterl ocks(x, &flags);
S26_SchedExecute(x, 1000, 0);

for (i =0, mask = 1; i < 6; i++, mask <<= 1)

printf("Power % is %\n", i, ((flags & mask) ? "on"

7.3.3 S26_Sched2601_GetL ink Status()

Function:

Prototype:

Returns:
Benchmark:

Notes:

Example:

Schedul es the fetching of the status of the gateway’ s sixteen IOM ports.

u32 S26_Sched2601_GCet Li nkSt at us(XACT x, ul6 *LinkFlags);

"of f");

Parameter Type Description
X void * Transaction handle obtained from S26_SchedQpen() .
Li nkFl ags ulé * Pointer to a 16-bit application buffer that isto receive the link status flags. Each bitis

associated with asingle port. For example, bit 4 is associated with port 4. A bitflagis
set to oneto indicate active link (IOM connected), or zero to indicate inactive link.

Error code as described in section 5.5. Zero isreturned if the operation was successful.

0.1 ms.

The gateway automatically maintains alist of active IOM ports, called the Active Port List (APL). Thisfunction

returns a snapshot of the APL to the client.

/'l Fetch the link status from MV nunber O.

ulé fl ags;

ulé mask;

int i;

void *x = S26_SchedOpen(0, 1);
S26_Sched2601_Cet Li nkStatus(x, &flags);
S26_SchedExecute(x, 1000, 0);

for (i =0, mask = 1; i < 16; i++, mask <<= 1)

Sensoray 2600 Programming Guide

Gateway Action Scheduling

if (flags & nask)
printf("Mdule detected at 1OM port %\n", i);
}

7.3.4 S26_Sched2601 SetWatchdog()

Function:

Prototype:

Returns:
Benchmark:

Notes:

Example:

Schedul es the programming of the gateway’ s communication watchdog interval.

u32 S26_Sched2601_Set Wat chdog(XACT x, u8 Nunilent hSeconds);

Parameter Type Description
X void * Transaction handle obtained from S26_SchedQpen() .
Nunifent hSeconds u8 MM communication watchdog interval, expressed in 100 millisecond

increments. For example, the value 25 specifies a 2.5 second watchdog
interval. Specify zero to disable the communication watchdog.

Error code as described in section 5.5. Zero isreturned if the operation was successful.
0.1ms.

The MM employs atimer to detect the absence of communications between the Ethernet client and the gateway. If
no communications are received from the client within the specified time-out interval, the communication timer
will time-out and the MM will execute a hardware reset. This behavior ensuresthat all 1/0 will be turned off in the
event the client shuts down abnormally.

The watchdog interval defaults to 10 seconds (Nunirent hSeconds = 100) in responseto aMM reset. If the default
interval is suitable for the application, no Set WAt chdog action need be issued to the MM.

Upon receipt of a Set WAt chdog action, the new watchdog interval is effective immediately and the watchdog
timer is reset so that it will time out when the new interval elapses.

/'l Set the conmunication watchdog interval on MM nunber 0 to 3.5 seconds.
void *x = S26_SchedOpen(0, 1);

S26_Sched2601_Set Wat chdog(x, 35);

S26_SchedExecute(x, 1000, 0);

7.4 Model 2608 Analog |OM

The functionsin this section are used to schedule IOM actions for Model 2608 Analog IOMs. These functions are applicable only
to Model 2608 IOMs. Any attempt to call these functions for other IOM types will result in a GAERR_| OMTYPE transaction error.
Note that these functions only schedule IOM actions into a transaction; they do not cause the actions to be immediately executed.

7.4.1 Type-SpecificErrors

In addition to the common IOM status bit flags (STATUS_RST and STATUS_CERR), this IOM type supports the following
type-specific flag. If thisflag is asserted, atransaction error of type GAERR | OVSPECI FI C will be generated:

Symbolic Name Description

STATUS 2608_CALERR A problem was encountered when this IOM was initialized and, as aresult, the calibration values stored in

the module’'s EEPROM are not being used. Instead, default values are being used which may affect the
accuracy of analog inputs and outputs. This can be caused by any of the following:

* A communication fault occurred when fetching values from the IOM’s EEPROM.
* The EEPROM checksum isinvalid.
* One or more calibration values stored in the EEPROM exceed tolerance limits.

7.4.2 Analog I nput Types

Several analog input types are supported by the middleware. Depending on the input type declared for an anal og input channel, the
middleware will automatically configure the channel’s gain as required. For example, declaring any of thermocouple input types

Sensoray 2600 Programming Guide Gateway Action Scheduling

will cause the corresponding channel to be programmed for the 100 millivolt measurement range. The following table shows the
relevant attributes for all supported input types. The enumerated input type names are defined in the App2600. h header file.

Enumerated Type Resolution Data Units Description

RAW LG TYPE 1 count ADC counts Corrected ADC counts, 10V range. Thisisthe default type.
RAW HG_TYPE 1 count ADC counts Corrected ADC counts, 100mV range.
V_10_TYPE 320 uv Volts Measured voltage, 10V range.
V_001_TYPE 32pv Volts Measured voltage, 100mV range.
TC_B_TYPE 0.457 °C @ 800 °C °Cor °F B thermocouple.

TC_C_TYPE 0.168 °C @ 800 °C °Cor °F C thermocouple.

TC E_TYPE 0.0478 °C @ 100 °C °Cor °F E thermocouple.

TC_J_TYPE 0.0593 °C @ 100 °C °Cor °F Jthermocouple.

TC_K_TYPE 0.0762 °C @ 100 °C °Cor °F K thermocouple.

TC_N_TYPE 0.107 °C @ 100 °C °Cor°F N thermocouple.

TC_R TYPE 0.267 °C @ 800 °C °Cor °F R thermocouple.

TC_S_TYPE 0.291 °C @ 800 °C °Cor °F S thermocouple.

TC T_TYPE 0.0696 °C @ 100 °C °Cor°F T thermocouple.

7.4.3 Calibration

Calibration is achieved by storing values in the 2608 module’s EEPROM. Values may be stored in the EEPROM by calling
S26_2608_W it eEepron(), and stored values may be retrieved by calling S26_Sched2608_ReadEepr on() .

Various EEPROM locations are reserved for calibration values as described in section 7.4.4. All calibration values are multi-byte
values that are stored in little-endian byte order.

7.4.4 Reserved EEPROM L ocations
As shown in the following table, the first 176 EEPROM locations are reserved for calibration and configuration data:

Address DataType Description

0 u8 Number of analog output channels present on the 2608 module. Thisis factory programmed and
should never be changed.

1to 11 Reserved for future use.

12 u32 Exact voltage of 10V reference standard, times 1e6.

16 u32 Exact voltage of 100mV reference standard, times 1€6.

20+6* CHAN s16 Raw binary value that would be programmed onto analog output channel CHAN in order to produce
exactly zero voltsout. Thistypically has a value between -15 and +15.

22+6* CHAN u32 Scalar, times 1e6, that is applied to values programmed onto analog output channel CHAN to
compensate DAC full scale error. The scalar valueistypically within +5% of 1.0.

68+2* CHAN s16 Raw binary value that must be subtracted from on-board reference temperature sensor CHAN to
compensate its offset temperature.

84 u8 Checksum of all stored bytes from address 0 through 83.

85 to 175 Reserved for future use.

176 to 255 Available for application use.

7.4.5 S26_Sched2608 SetTempUnits()

Function: Schedules the setting of temperature units for thermocouple data returned from a model 2608 |OM.

Sensoray 2600 Programming Guide

Gateway Action Scheduling

Prototype:

Returns:
Benchmark:

Notes:

Example:

u32 S26_Sched2608_Set TenpUni ts(XACT x, | OMPORT lonPort, int DegreesF);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

I omPor t u8 The IOM port number (on the MM) to which the target IOM is connected.
Degr eesF int Set to O for degrees C, or to 1 for degrees F.

Error code as described in section 5.5. Zero isreturned if the operation was successful.
0.1ms.

This sets the units for all analog input channels that are configured for thermocouple interface. Temperature units
default to degrees C upon module reset. After calling this function, no delay is required before fetching analog
input data.

/1l Set tenperature units to degrees F on the 2608 at MM nunber O, | OM port 1.
void *x = S26_SchedOpen(0, 1);

S26_Sched2608_Set TempUnits(x, 1, 1);

S26_SchedExecute(x, 1000, 0);

7.4.6 S26_Sched2608_GetAins()

Function:

Prototype:

Returns:
Benchmark:

Notes:

Example:

Schedul es the fetching of all analog input values from amodel 2608 |IOM.

u32 S26_Sched2608_GCet Ai ns(XACT x, | OVWPORT lonPort, double *data, BOOL Integrated);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

I omPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

dat a doubl e * Pointer to a 16-element application buffer that is to receive the analog input data
values.

Integrated int Set to 0 to fetch the “snapshot” values, or set to 1 to fetch the “integrated” values.

Error code as described in section 5.5. Zero isreturned if the operation was successful.
4.1 ms.

Important: The application must call S26_Sched2608_Get Cal Dat a() at least once before calling
S26_Sched2608_Get Ai ns() . See section 7.4.9 for details.

Sixteen double-precision values are fetched when the schedul ed action executes, so the application’ s data buffer
must be large enough to receive all sixteen datavalues. One data value is fetched for each of the 2608’ s analog
input channels. This action does not cause the analog input channels to be digitized; it simply fetches the
previously digitized values. Excluding communication latency, the fetched values range in age from 0 to 2
milliseconds for snapshot values, or from 0 to 16 (or 20, if the power line frequency has been declared to be 50 Hz)
milliseconds for integrated values.

For each analog input channel, the fetched data value is represented in units that are appropriate for the declared
input type that was specified in aprior call to S26_Sched2608_Set Ai nTypes(). See section 7.4.2 for details.
Thermocouple channels will be returned in either degrees C (default) or F, depending on the units selected in any
prior call to S26_Sched2608_Set TermpUni t s() .

When the 2608 module is reset, or when the client calls S26_Sched2608_Set Ai nTypes() , the client must wait at
least 32 milliseconds before calling S26_Sched2608_Get Ai ns() . This delay ensures that the digitizer will have
enough time to acquire valid data for all analog input channels before the data is passed to the client.

/1 Do a calibrate and read snapshot data fromthe 2608 at MM nunmber 0, |OM port 1.
doubl e ain[16];

Sensoray 2600 Programming Guide Gateway Action Scheduling

void *x = S26_SchedOpen(0, 1);
S26_Sched2608_Get Cal Data(x, 1, 0);
S26_Sched2608_Get Ains(x, 1, ain, 0);
S26_SchedExecute(x, 1000, 0);

7.4.7 S26_Sched2608 GetAinTypes()
Function: Schedules the fetching of all programmed anal og input types from a model 2608 |OM.

Prototype: u32 S26_Sched2608_Get Ai nTypes(XACT x, | OMPORT lonPort, u8 *types);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

| onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

types ug8 * Pointer to a 16-byte application buffer that is to receive the programmed, enumerated

analog input types for all analog input channels.

Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.
Benchmark: 0.9 ms.

Notes: The fetched values are the enumerated input types that were registered with the middleware when they were
programmed, after validation against the gain flags that are returned from the 2608 in response to a
OP_AIO_GETINPUTRANGES action.

There are two possible reasons for differences between the fetched and previously programmed values: (1) an
illegal type was specified when the input types were programmed, or (2) the 2608 |OM was unexpectedly reset. In
either case, all sixteen of the IOM’ s registered analog input types will be reset to their default values

(RAW LG _TYPE) when this scheduled action is executed.

Example: /1 Get the analog input types fromthe 2608 at MM nunber 0, | OM port 1.
u8 ai ntypes[16];
void *x = S26_SchedOpen(0, 1);

S26_Sched2608_GCet Ai nTypes(x, 1, aintypes);
S26_SchedExecute(x, 1000, 0);

7.4.8 S26_Sched2608 GetAout()
Function: Schedules the fetching of one analog output setpoint from amodel 2608 IOM.

Prototype: u32 S26_Sched2608_Cet Aout (XACT x, | OMPORT |onPort, u8 chan, double *volts);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

| onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 Analog output channel number. Valid channel numbers range from 0 to 3 on model
2608-4, or from 0 to 7 on model 2608-8. There are no analog output channels on
model 2608-0.

volts doubl e * Pointer to a double-precision value that isto receive the fetched setpoint value. The
fetched value will be expressed as a voltage, with avalue in the range from -10.0 to
+10.0.

Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.

Benchmark: 0.9 ms.

Notes: In most cases the fetched setpoint value will equal the last programmed value. The exception to thisisif the 2608
IOM was unexpectedly reset, in which case the fetched setpoint will be reset to zero.

Sensoray 2600 Programming Guide Gateway Action Scheduling

Example:

/'l Get the anal og output channel 2 setpoint fromthe 2608 at MM nunber O, | OM port 1.
doubl e set point;

void *x = S26_SchedOpen(0, 1);

S26_Sched2608_Get Aout (x, 1, 2, setpoint);

S26_SchedExecute(x, 1000, 0);

7.4.9 S26_Sched2608_GetCalData()

Function:

Prototype:

Returns:
Benchmark:

Notes:

Example:

Schedul es the fetching of calibration data from amodel 2608 IOM.

u32 S26_Sched2608_GCet Cal Dat a(XACT x, | OWORT |onPort, short *caldata);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

I omPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

cal dat a short * Pointer to a 12* 16-bit application buffer that is to receive the calibration data. Set to

zero if the application is not interested in receiving calibration data (this is the case for
most applications).

Error code as described in section 5.5. Zero isreturned if the operation was successful.
3.3ms.

S26_Sched2608_Get Cal Dat a() schedules the fetching of calibration datathat is used internally by the
middleware. The middleware uses the calibration data to perform offset and gain corrections for voltage
measurements and for reference-junction compensation for thermocouple measurements. |n most applicationsit is
sufficient to call this function with the cal dat a argument set to zero because the typical application has no need
for direct access to calibration data.

S26_Sched2608_Get Cal Dat a() must be called at least once before calling S26_Sched2608_Get Ai ns() . In
addition, S26_Sched2608_Get Cal Dat a() should be called as needed to minimize errors due to circuit warm-up,
ambient temperature drift and thermal transients. The individual situation dictates when and how often this
function should be called, but as general rules-of-thumb:

O If S26_Sched2608_Get Ai ns() iscalled infrequently, call S26_Sched2608_Get Cal Dat a() just before each
call t0 S26_Sched2608_Get Ai ns() .

U If s26_Sched2608_Get Ai ns() iscalled frequently, call S26_Sched2608_Get Cal Dat a() periodically. The
rate at which these periodic calls are made depends mostly on the 2608’ s environment. Higher rates are
required where the 2608 is subjected to sudden temperature changes; in such cases once-per-second is a
suitablerate. In more stable environments, once per ten seconds may be adequate. Of coursg, if time permits
itisalso permissible to simply call S26_Sched2608_Get Cal Dat a() just before each call to
S26_Sched2608_Cet Ai ns() .

See the example in section 7.4.6.

7.4.10 S26_Sched2608_ReadEeprom()

Function:

Prototype:

Schedul es the fetching of one data byte from the EEPROM on a model 2608 |OM.

u32 S26_Sched2608_ReadEeprom XACT x, |OVWPORT lonPort, u8 address, u8 *value);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

| onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.
addr ess u8 EEPROM memory address, in range 0x00 to OxFF.

val ue ug * Pointer to application u8 buffer that isto receive the EEPROM data byte.

Sensoray 2600 Programming Guide Gateway Action Scheduling

Returns:
Benchmark:

Notes:

Example:

Error code as described in section 5.5. Zero isreturned if the operation was successful.
0.8 ms.

EEPROM addresses 0x00 through 0xAF are reserved for use by the middleware. Addresses 0xB0 through 0xFF are
available for general application use.

/1 Read EEPROM byte at address OxBO fromthe 2608 at MM nunber O, | OM port 1.
u8 eeval ;

void *x = S26_SchedOpen(0, 1);

S26_Sched2608_ReadEeprom(x, 1, O0xBO, &eeval);

S26_SchedExecute(x, 1000, 0);

7.4.11 S26_Sched2608_SetAinTypes()

Function:

Prototype:

Returns:
Benchmark:

Notes:

Example:

Schedul es the programming of all analog input types on a model 2608 |OM.

u32 S26_Sched2608_Set Ai nTypes(XACT x, | OWPORT |onPort, const u8 *types);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

| onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

types ug8 * Pointer to a 16-byte application buffer that contains the enumerated anal og input types

for al analog input channels. See section 7.4.2 for details.

Error code as described in section 5.5. Zero isreturned if the operation was successful.
0.9ms.

S26_Sched2608_Set Ai nTypes() informsthe middleware as to what sensor types and input ranges are being used
on the target IOM’s analog input channels. These type declarations are used by the middleware to convert
digitized input values to engineering units when S26_Sched2608_Get Ai ns() executes. |n addition to registering
the input types with the middleware, S26_Sched2608_Set Ai nTypes() schedules the programming of the input
ranges for all analog input channels, as appropriate for the declared types.

/'l Specify the input types.

u8 Sensor Types[16] = {
V_10_TYPE, V_10_TYPE, V_10_TYPE, V_10_TYPE, /1 Chan 0-7: %10V range.
V_10_TYPE, V_10_TYPE, V_10_TYPE, V_10_TYPE,
V_001_TYPE, V_001_TYPE, V_001_TYPE, V_001_TYPE, /] Chan 8-11: +100nV range.
TC_K_TYPE, TC K TYPE, TC K TYPE, TC_ K TYPE /1 Chan 9-15: K thernopcoupl es.

|

/'l Programthe input types for the nodel 2608 at MM number 0O, |OM port 1.
void *x = S26_SchedOpen(0, 1);

S26_Sched2608_Set Ai nTypes(x, 1, SensorTypes);

S26_SchedExecute(x, 1000, 0);

7.4.12 S26_Sched2608_SetAout()

Function:

Schedul es the programming of one analog output setpoint on a model 2608 |OM.

Sensoray 2600 Programming Guide Gateway Action Scheduling

Prototype: u32 S26_Sched2608_Set Aout (XACT x, | OWPORT lonPort, u8 chan, double volts);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

I omPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 Analog output channel number. Valid channel numbers range from 0 to 3 on model
2608-4, or from 0 to 7 on model 2608-8. There are no analog output channels on
model 2608-0.

volts doubl e The desired output voltage: from -10.0 to +10.0.

Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.

Benchmark: 0.9 ms.
Example: /1 Program anal og out put channel 2 to 5.35V on the 2608 at MM nunber 0, |OM port 1.
void *x = S26_SchedOpen(0, 1);

S26_Sched2608_Set Aout (x, 1, 2, 5.35);
S26_SchedExecute(x, 1000, 0);

7.4.13 S26_Sched2608_SetL ineFreq()
Function: Schedules the declaration of power line frequency to a model 2608 |OM.

Prototype: u32 S26_Sched2608_Set Li neFreq(XACT x, | OVMPORT lonPort, u8 freq);

Parameter Type Description
X void * Transaction handle obtained from S26_SchedQpen() .
| omPor t u8 The IOM port number (on the MM) to which the target IOM is connected.
freq u8 Enumerated line frequency: 0 = 60 Hz (default), 1 = 50 Hz.
Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.

Benchmark: 0.7 ms.

Notes: The integration period for the “integrated” adc values defaultsto 16 milliseconds to help reject power line noise.
This action enables the application to change the integration period to 20 milliseconds in cases where the power
line frequency is 50 Hz.

Example: /1 Declare 50 Hz line frequency to the 2608 at MM nunber 0, | OM port 1.
void *x = S26_SchedOpen(0, 1);

S26_Sched2608_Set Li neFreq(x, 1, 1);
S26_SchedExecute(x, 1000, 0);

7.4.14 S26 2608 WriteEeprom()
Function: Writes one data byte to the EEPROM on a model 2608 IOM.

Prototype: u32 S26_2608_WiteEepron(u32 hbd, | OWORT | onPort, u32 nmsec, u8 addr,u8 val,u32 retries);

Parameter Type Description

hbd u32 MM handle.

| onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

nsec u32 Maximum time, in milliseconds, to wait for a response before declaring a time-out.
addr u8 EEPROM memory address, in range 0x00 to OxFF.

val u8 Data value that is to be written to the EEPROM.

retries u32 Maximum number of transaction retry attempts.

Sensoray 2600 Programming Guide Gateway Action Scheduling

Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.8 ms.

Notes: EEPROM addresses 0x00 through 0xAF are reserved for use by the middleware; applications should not write to
any locations in this reserved address range. Addresses 0xB0 through 0xFF are available for application use.

Note that this function executes an EEPROM write, rather than just scheduling one.

Example: // Wite 0x05 to EEPROM address OxBO on the 2608 at MM number O, |1OM port 1.
S26_2608_WiteEeprom(O, 1, 1000, 0xBO, 0x05, 1);

7.5 Model 2610 Digital IOM

The functionsin this section are used to schedule IOM actions for Model 2610 48-channel Digital IOMs. These functions are
applicable only to Model 2610 IOMs. Any attempt to call these functions for other IOM types will result in a GAERR _| OMTYPE
transaction error. Note that these functions only schedule |IOM actions into a transaction; they do not cause the actions to be
immediately executed.

See section 6.2.2 for programming examples that show how to use these functions. For additional information on the IOM actions
that are invoked by these functions, see the Model 2600 Family Instruction Manual.
7.5.1 Type-SpecificErrors

In addition to the common IOM status bit flags (STATUS_RST and STATUS_CERR), this IOM type supports the following
type-specific flag. If thisflag is asserted, atransaction error of type GAERR | OVSPECI FI C will be generated:

Symbolic Name Description

STATUS 2610_STRM An error was detected in the serial data stream that is used to control the DIO
output drivers. Thisflag can be cleared by invoking aCl ear St at us action.

7.5.2 S26_Sched2610_Getlnputs()
Function: Schedules the fetching of all DIO input states from a model 2610 |OM.

Prototype: u32 S26_Sched2610_Cet | nputs(XACT x, | OVPORT lonPort, u8 *states);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

| onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.
states ug8 * Pointer to 6-byte application buffer that isto receive the input states of the

48 digital 1/0 channels. Thefirst byte receives channels 0 (Isb) to 7 (msb),
the second byte receives channels 8 (Isb) to 15 (msb), and so on.

Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.
Benchmark: 1.3 ms.

Notes: The fetched state values represent the debounced, physical states of all DIO channels. Because the inputs are
sampled every 2 milliseconds, and the debounce period is 10 milliseconds, the returned state values will all have an
age ranging from 10 to 12 milliseconds, plus any network communication latency. The physical states of all DIO
channels are returned, regardless of their respective operating modes.

Example: /1 Get all DIOinput states fromthe 2610 at MM nunber O, | OM port 2.
u8 dins[6];
void *x = S26_SchedOpen(0, 1);
S26_Sched2610_GCet |l nputs(x, 2, dins);
S26_SchedExecute(x, 1000, 0);

Sensoray 2600 Programming Guide Gateway Action Scheduling

7.5.3 S26_Sched2610 GetM odes()
Function: Schedules the fetching of the operating modes for DIO channels 0 to 7 from amodel 2610 IOM.

Prototype: u32 S26_Sched2610_GCet Modes(XACT x, | OVWPORT lonPort, u8 *nodes);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

| oPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

nodes ug8 * Pointer to a 1-byte application buffer that is to receive the channel mode info. The

byte indicates the operating modes for DIO channels 0 to 7. Each bit is associated
with achannel number. For example, bit 4 is associated with channel 4. A bit isset to
one when operating in the PWM mode, or to zero in the Standard mode.

Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.

Benchmark: 0.8 ms.

Example: /1 Get DI O channel 0-7 operating nodes fromthe 2610 at MM nunber 0, |OM port 2.
u8 nodes;
void *x = S26_SchedOpen(0, 1);

S26_Sched2610_Cet Modes(x, 2, &nodes);
S26_SchedExecute(x, 1000, 0);

7.5.4 S26_Sched2610 GetM odes32()
Function: Schedules the fetching of the operating modes for DIO channels 0 to 31 from a model 2610 |OM.

Prototype: u32 S26_Sched2610_GCet Modes32(XACT x, | OWPCORT |onPort, u8 *nodes);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

| onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

nodes ug * Pointer to a 4-byte application buffer that is to receive the channel mode info. The

bytes indicates the operating modes for DIO channels 0 to 31. Each bit is associated
with achannel number. For example, bit 4 of nodes[0] isassociated with channel 4.
A bit is set to one when operating in the PWM mode, or to zero in the Standard mode.

Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.

Benchmark: 1.1 ms.

Notes: This function is compatible with 7410 firmware version 1.02 or higher. Earlier firmware versions support only
eight pwm channels.

Example: /1 Get DI O channel 0-31 operating nodes fromthe 2610 at MM number 0O, | OM port 2.
u8 nodes|[4];
void *x = S26_SchedOpen(0, 1);
S26_Sched2610_Get Modes32(x, 2, nodes);
S26_SchedExecute(x, 1000, 0);

755 S26_Sched2610_GetOutputs()

Function: Schedules the fetching of all 48 DIO programmed output states from amodel 2610 IOM.

Sensoray 2600 Programming Guide Gateway Action Scheduling

Prototype: u32 S26_Sched2610_Get Qut put s(XACT x, | OMPORT lonPort, u8 *states);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

| omPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

states ug8 * Pointer to 6-byte application buffer that is to receive the output states of the 48 digital

1/0 channels. The first byte receives channels 0 (Isb) to 7 (msb), the second byte
receives channels 8 (Ish) to 15 (msb), and so on.

Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.
Benchmark: 1.3 ms.

Notes: This function fetches the programmed output driver states of all DIO channels. Note that the programmed output
driver states may not correspond exactly to the physical channel states because some channels may be driven by
external signal sources. Inthe case of channelsthat have been configured for the PWM mode, this function returns
indeterminate state values.

Example: /1 Get all DI O output states fromthe 2610 at MM nunber 0, | OM port 2.
u8 dout s[6];
void *x = S26_SchedOpen(0, 1);
S26_Sched2610_Get Qut puts(x, 2, douts);
S26_SchedExecute(x, 1000, 0);

7.5.6 S26_Sched2610_GetPwmRatio()
Function: Schedules the fetching of the PWM ratio for one DIO channel from amodel 2610 IOM.

Prototype: u32 S26_Sched2610_GCet PmrRati o(XACT x, | OWORT lonPort, u8 chan, u8 *OnTinme, u8 *OfTinme);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

| oPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The DIO channel number that isto be queried. Legal values range from O to 7 for
7410 firmware version 1.01 and below, or 0 to 31 for firmware versions 1.02 and
higher.

OnTi ne ug8 * Pointer to a 1-byte application buffer that is to receive the programmed PWM on time

expressed in 2 msec increments.

O f Ti me ug8 * Pointer to a 1-byte application buffer that is to receive the programmed PWM off time
expressed in 2 msec increments.

Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.
Benchmark: 0.9 ms.

Example: /'l Fetch the PWMratio for DI O channel 5 on the 2610 at MM nunber 0, | OM port 2.
u8 ontine;
u8 of ftine;
void *x = S26_SchedOpen(0, 1);
S26_Sched2610_Get PwmRatio(x, 2, 5, &ontinme, &offtime);
S26_SchedExecute(x, 1000, 0);

7.5.7 S26_Sched2610_SetModes()

Function: Schedules the programming of the operating modes for DIO channels 0 to 7 on amodel 2610 IOM.

Sensoray 2600 Programming Guide Gateway Action Scheduling

Prototype: u32 S26_Sched2610_Set Modes(XACT x, | OVPORT lonPort, u8 *nodes);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

| oPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

nodes ug8 * Pointer to a 1-byte application buffer that contains the channel mode flags. The byte

indicates the operating modes for DIO channels O to 7. Each bit is associated with a
channel number. For example, bit 4 is associated with channel 4. Set a bit to one to
operate in the PWM mode, or to zero to operate in the Standard mode.

Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.
Benchmark: 0.8 ms.

Example: /1 Set DI O channel 0-7 operating nodes on the 2610 at MM nunber 0, |1 OM port 2.
/1l Channels 0 to 5: Standard node, channels 6 and 7: PWM node.
u8 nodes = 0xCO;
void *x = S26_SchedOpen(0, 1);
S26_Sched2610_Set Modes(x, 2, &nodes);
S26_SchedExecute(x, 1000, 0);

7.5.8 S26_Sched2610 SetM odes32()
Function: Schedules the programming of the operating modes for DIO channels 0 to 31 on amodel 2610 IOM.

Prototype: u32 S26_Sched2610_Set Modes32(XACT x, | OWPCORT |onPort, u8 *nodes);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

I omPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

nodes u8 * Pointer to a 4-byte application buffer that contains the channel mode flags. The bytes

indicates the operating modes for DIO channels 0 to 31. Each bit is associated with a
channel number. For example, bit 4 of nodes[0] isassociated with channel 4. Set a
bit to logic one for PWM maode, or to zero for Standard mode.

Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.
Benchmark: 1.1 ms.

Notes: This function is compatible with 7410 firmware version 1.02 or higher. Earlier firmware versions support only
eight pwm channels.

Example: /1 Set DI O channel 0-31 operating nodes on the 2610 at MM nunber 0, | OM port 2.
/1 Channels 6 and 7: PWM node, all other channels: Standard node.
u8 nodes[4] = { 0xCO, 0x00, 0x00, 0x00 };
void *x = S26_SchedOpen(0, 1);
S26_Sched2610_Set Modes32(x, 2, nodes);
S26_SchedExecute(x, 1000, 0);

7.5.9 S26_Sched2610_SetOutputs()

Function: Schedules the programming of all 48 DIO output states on amodel 2610 IOM.

Sensoray 2600 Programming Guide Gateway Action Scheduling

Prototype: u32 S26_Sched2610_Set Qut put s(XACT x, | OMPORT lonPort, u8 *states);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

I onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.
states ug8 * Pointer to 6-byte application buffer that contains the desired output states of the 48

digital I/O channels. Thefirst byte contains channels 0 (Isb) to 7 (msb), the second
byte contains channels 8 (Isb) to 15 (msb), and so on.

Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.
Benchmark: 1.3 ms.
Example: /'l Programall DI O output states on the 2610 at MM nunber 0, |OM port 2.
u8 douts[6] = { 0x01, 0x23, 0x45, 0x67, 0x89, O0xAB }; // Desired Dl O states.
void *x = S26_SchedOpen(0, 1);

S26_Sched2610_Set Qut puts(x, 2, douts);
S26_SchedExecute(x, 1000, 0);

7.5.10 S26_Sched2610_SetPwmRatio()
Function: Schedules the programming of the PWM ratio for one DIO channel on amodel 2610 |OM.

Prototype: u32 S26_Sched2610_Set PmrRati o(XACT x, | OWORT lonPort, u8 chan, u8 OnTinme, u8 OfTine);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

| onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The DIO channel number that isto be programmed. Legal valuesrangefrom0to 7 for
7410 firmware version 1.01 and below, or 0 to 31 for firmware versions 1.02 and
higher.

OnTi e u8 PWM on time, expressed in 2 msec increments, to be programmed.

O f Ti me u8 PWM off time, expressed in 2 msec increments, to be programmed.

Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.

Benchmark: 0.9 ms.

Example: /1 Set the PWMratio for DI O channel 5 on the 2610 at MM number 0, |1 OM port 2.
/1 PWMratio = on for 20 nsec, off for 30 nsec.
void *x = S26_SchedOpen(0, 1);
S26_Sched2610_Set PwnRatio(x, 2, 5, 10, 15);
S26_SchedExecute(x, 1000, 0);

7.6 Model 2612 Analog |OM

The functionsin this section are used to schedule IOM actions for Model 2612 Analog IOMs. These functions are applicable only
to Model 2612 IOMs. Any attempt to call these functions for other IOM types will result in a GAERR | OMTYPE transaction error.
Note that some of these functions only schedule IOM actionsinto a transaction; they do not cause the actions to be immediately
executed.

Sensoray 2600 Programming Guide Gateway Action Scheduling

7.6.1 Type-SpecificErrors

In addition to the common IOM status bit flags (STATUS_RST and STATUS_CERR), this IOM type supports the following
type-specific flags. If any of these flags are asserted, a transaction error of type GAERR_| OVSPECI FI C will be generated:

Symbolic Name

Description

STATUS_2612_OVERFLOW
STATUS_2612_UNDERFLOW
STATUS_2612_EEPROM

Differential input voltage exceeds ADC positive input limit.

Differential input voltage exceeds ADC negative input limit.

EEPROM read/write error. This flag will be asserted if the 2412’ sinternal EEPROM checksum isinvalid.
This can happen if S26_2612_Rest or eCal i brati ons() iscalled before
S26_2612_RestoreCal i brati ons() hasbeen caled at least once for the target channel.

7.6.2 Analog Input Modes

Input mode registers allow to set timing parameters of the analog-digital conversion for each channel. The enumerated
oversanple ratio settings,speed multiplier andreference vol t ages type names are defined in the App2600. h

header file.

7.6.3 S26_Sched2612_SetM ode()

Schedul es the programming of the measurement mode for one channel on model 2612 |OM.

Prototype: u32 S26_Sched2612_Set Mbde(XACT x,

| OMPORT | onPort,

u8 chan, u32 node);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

I onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The channel number that isto be programmed. Legal values range from 0 to 3.

mode u32 One of the OSR symbolic constants. To use the speed multiplier mode, the MODE_2X

symbolic constant must be ORed with the OSR.

The node parameter contains the OSR (oversample ratio) selector and speed multiplier enable bit:

31

24

20 19

16

8

OSRSEL

M

0|0 |0

ofo|jo|jojojo|ojo0j0|0|O|O|0O|O

The OSRSEL field selectsthe oversampleratio, whichin
turn configuresanumber of other behavioral attributes.
Any of the following values may be specified:

The Mbit enables the speed multiplier when set to logic
one, and it disables the multiplier when set to zero.
When enabled, the speed multiplier doubles the
conversion rate at the expense of one additional cycle

RMS Convert First -3dB .
OSRSEL OSR Noise Rate Notch Point Ef;eictts"’e of latency.
W) Hz (Hzy (Hy The most significant nibble must be set to OxA. All
1 64 23 35156 28125 1696 170 other bits, which are reserved for future use, must be
2 128 45 1757.8 140625 848 20.1 set to zero.
3 256 2.8 8789 703L3 424 208
4 512 20 4395 35156 212 213
5 1024 14 2197 17578 106 218
6 2048 11 1099 8789 53 22.1
7 4096 072 549 4395 265 227
8 8192 053 275 2197 132 232
9 16384 035 1375 1099 6.6 23.8
15 32768 028 6875 549 33 24.1
Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Sensoray 2600 Programming Guide

Gateway Action Scheduling

Benchmark:

Notes:

Example:

0.8 ms.

Thisfunction, aswell as S26_Sched2612_Set Vol t ages(), should be called before calibrating or acquiring
digitized data from an analog input channel. Digitized datamay be fetched from the 2612 immediately after calling
this function; no delay is required.

/1 Set measurenent node on the 2612 at MM nunmber 0, | OM port 10, channel 2.
/1 Set the OSR to 32768 and enable the speed multiplier.

void *x = S26_SchedOpen(0, 1);

S26_Sched2612_Set Mode(x, 10, 2, OSR 32768 | MODE 2X);

S26_SchedExecute(x, 1000, 0);

7.6.4 S26_Sched2612_SetVoltages()
Schedul es the programming of all power output channels on amodel 2612 IOM.

Prototype:

Returns:
Benchmark:

Notes:

Example:

u32 S26_Sched2612_Set Vol t ages(XACT x, | OWORT |onPort, u8 volts);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

| onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

volts u8 A collection of four, two-bit fields. Each field specifies the output voltage for a power output
channel.

Two-bit field for each channel has to be set to one of the REF_OUT _xV values. Bits0,1 are
responsible for channel 0, bits 2,3 - for channel 1, bits 4,5 - for channel 2 and bits 6,7 - for
channel 3.

Error code as described in section 5.5. Zero is returned if the operation was successful.

0.3 ms.

This function establishes the power output voltages on al channels. These output voltages are typically used to
supply excitation to sensors such as strain gauges.

Thisfunction, aswell asS26_Sched2612_Set Mode(), should be called before calibrating or acquiring digitized
data from an analog input channel. Since a change in the output voltage will cause a step change in the associated
input channel’ s applied voltage, there will be a delay of one conversion time before valid digitized data becomes
available.

/'l Set reference voltage on the 2612 at MM nunber 0O, | OM port 10:
/1 channel 0 to 2V, channel 1 to 1.25V, channel 2 to 5V and channel 3 to 3V.
void *x = S26_SchedOpen(0, 1);
S26_Sched2612_Set Vol t ages(x, 10,
REF_QOUT_2V |
(REF_QUT_1V << 2) |
(REF_QUT_5V << 4) |
(REF_QUT_3V << 6)
)
S26_SchedExecute(x, 1000, 0);

7.6.5 S26_Sched2612_GetValues()
Schedules the fetching of the digitized values of all analog input channels on model 2612 |OM.

Sensoray 2600 Programming Guide Gateway Action Scheduling

Prototype: u32 S26_Sched2612_GCet Val ues(XACT x, | OWORT lonPort, s32 *values, u8 *tstanp);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

| onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

val ues s32 * Pointer to array of 4* 32bit buffer to receive the values.

tstanp u8 * Pointer to array of 4*8bit buffer to receive the last sample numbers (timestamps).
Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 6.2 ms.

Example: [l Cet raw values on the 2612 at MM nunber O, |OM port 10.
s32 val ues[4];
u8 tstanp[4];
void *x = S26_SchedOpen(0, 1);
S26_Sched2612_Get Val ues(x, 10, vbuff, tbuff);
S26_SchedExecute(x, 1000, 0);

7.6.6 S26_Sched2612 RefreshData()
Schedules the fetching of the raw values of all channels to internal middleware buffers on amodel 2612 IOM.

Prototype: u32 S26_Sched2612_RefreshData(XACT x, |OWORT |lonPort);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

| onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.
Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: 0.1 ms.

Notes: This function does the actual work of scheduling the transfer of measured raw data from the 2612 IOM into a
middleware buffer. Once the raw data values have been transferred to the middleware buffer, the application
program can then call S26_2612_Get Cal i br at edVal ue() to obtain corrected datain the desired engineering
units.

This function must be called periodically to refresh internally buffered data. To avoid atimestamp overflow this
period must be less than 256 sample periods. For example, if the samplerate is 55 Hz, the data must be refreshed at
least every 4.6 (255 / 55) seconds.

Since all 2612-specific functiona are thread-safe, it is possible to call S26_Sched2612_Ref reshbDat a() from one
thread to fetch raw datainto the internal middleware buffer, while another thread calls
S26_2612_Get Cal i br at edVal ue() to acquire corrected data for use by the application.

Example: /1 Cet buffered values on the 2612 at MM number O, |1 OM port 10.
void *x = S26_SchedOpen(0, 1);

S26_Sched2612_RefreshbData(x, 10);
S26_SchedExecute(x, 1000, 0);

7.6.7 S26 2612 RegisterZero()
Establishes the “zero offset” on one analog input channel on a model 2612 |IOM.

Sensoray 2600 Programming Guide Gateway Action Scheduling

Prototype:

Returns:
Benchmark:

Notes:

Example:

u32 S26_2612_Regi sterZero(u32 hbd, | OWORT lonPort, u32 nsec, u8 chan, u32 nsnp);

Parameter Type Description

hbd u32 MM handle.

I onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

nsec u32 Maximum time to wait for the gateway response packet, in milliseconds, before declaring a
time-out.

chan u8 The channel number that isto be registered. Legal values range from 0 to 3.

nsnp u32 Number of samples used to average calibration result.

Error code as described in section 5.5. Zero is returned if the operation was successful.
(tsample + 0.4 ms) * nsnp, Wwheret sanpl e isthe target channel’ s sample period.

Thisfunction is part of the calibration process for an analog input channel. It calculates the “zero offset” value for
an analog input channel and stores the value in an internal buffer. The target channel will be measured in rapid
succession a number of times, as specified by nsip. The resulting digitized values are averaged and then stored
for later use. Later, when the application program samples the analog input, the offset value is used to offset-adjust
the resulting digital data value.

When thisfunction is called, an actual zero value reference signal must be applied to the measurement inputs of the
target analog input channel, and the reference level must be held constant until the measurement is finished.

Note that this function performs its action when called, unlike many other middiware functions that simply
schedule future actions.

/'l Register zero values on the 2612 at MM nunber 0, | OM port 10, channel 2.
S26_2612_Regi sterZero(0, 10, 1000, 2, 100);

7.6.8 S26 2612 Register Span()

Measures and calculates the “ positive full scale” value for one channel on amodel 2612 IOM.

Prototype:

Returns:
Benchmark:

Notes:

u32 S26_2612_Regi ster Span(u32 hbd, | OWORT |onPort, u32 nsec, u8 chan, u32 nsnp, double load);

Parameter Type Description

hbd u32 MM handle.

I onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

nsec u32 Maximum time to wait for the gateway response packet, in milliseconds, before declaring a
time-out.

chan u8 The channel number that isto be registered. Legal values range from 0 to 3.

nsnp u32 Number of samples used to average calibration result.

| oad doubl e Actual value applied to the channel input in any user’s units.

Error code as described in section 5.5. Zero is returned if the operation was successful.
(tsample + 0.4 ms) * nsnp, wheret sanpl e isthe target channel’ s sample period.

This function calculates the “ positive full scale” value and stores the value in an internal buffer. The actual
positive full scale value must be applied to the corresponding channel’ sinput before start of calibration and held
until the function returns. This function is called as the final step in atwo-step physical gauge calibration
procedure.

When this function executes, nsnp measurements are taken, the average value is calculated and stored as the
“positive full scale” value for one channel. The stored value will be used |ater to calculate corrected values.

Sensoray 2600 Programming Guide Gateway Action Scheduling

A gauge load parameter, | oad, must be specified when this function is called. This value represents the difference
between the load that is applied when S26_2612_Regi st er Zer o() was called and the load that is applied when
S26_2612_Regi st er Span() iscalled. For example, suppose the applied load is 2,000 pounds. Thel oad
parameter should be set to 2,000.0. After executing this command, S26_Sched2612_Get Cal i br at edVal ues()
will return data from this channel in units of pounds. In this case, an applied load of 153.7 pounds, for example,
would cause S26_Sched2612_Get Cal i br at edVal ues() to return the value 153.7.

Note that this function performs its action when called, unlike many other middiware functions that simply
schedule future actions.

Example: /1l Set span to 2000 pounds on the 2612 at MM number 0, | OM port 10, channel 2.
S26_2612_Regi ster Span(0, 10, 1000, 2, 100, 2000.0);

7.6.9 S26 2612 RegisterTare()
Measures and cal culates the “ permanent offset” (i.e., tare) value for one channel on amodel 2612 |IOM

Prototype: u32 S26_2612_Regi sterTare(u32 hbd, | OWORT lonPort, u32 nsec, u8 chan, u32 nsnp);

Parameter Type Description
hbd u32 MM handle.
| oPor t u8 The IOM port number (on the MM) to which the target IOM is connected.
nsec u32 Maximum time to wait for the gateway response packet, in milliseconds, before declaring a
time-out.
chan u8 The channel number that isto be registered. Legal values range from 0 to 3.
nsnp u32 Number of samples used to average calibration result.
Returns: Error code as described in section 5.5. Zero is returned if the operation was successful.

Benchmark: (tsanple + 0.4 ms) * nsnp, wheret sanpl e isthe target channel’ s sample period.

Notes: This function calculates the “ permanent offset” (tare) value and storesthe value in an internal buffer. The actual
tare value must be applied to the corresponding channel’ s input before start of calibration and held until the
function returns. Taring is accomplished by adjusting the data offset so that data returned by
S26_Sched2612_Get Cal i brat edVal ues() will equal zero at the current load condition.

When this function executes, nsnp measurements are taken, the average value is calculated and stored as the
“permanent offset” (tare) for one channel. The stored value will be used later to calculate corrected values.

Note that this function performs its action when called, unlike many other middiware functions that simply
schedule future actions.

Example: /'l Register tare on the 2612 at MM nunber 0, | OM port 10, channel 2.
S26_2612_Regi sterTare(0, 10, 1000, 2, 100);

7.6.10 S26_2612_GetCalibratedValue()

Calculates and returns the corrected, measured value for one channel on amodel 2612 IOM.

Prototype: doubl e S26_2612_Cet Cal i br at edval ue(u32 hbd, |1 OWORT |onPort, u8 chan, u32 *sanple);

Parameter Type Description

hbd u32 MM handle.

| oPor t u8 The IOM port number (on the MM) to which the target IOM is connected.
chan u8 The channel number that isto be registered. Legal values range from 0 to 3.
sanpl e u32 * Pointer to 32bit buffer to receive the sample counter value.

Returns: Calibrated value.

Sensoray 2600 Programming Guide Gateway Action Scheduling

Benchmark:

Notes:

Example:

<< 0.1 ms (no network transactions used).

This function converts the specified channel’s raw digitized value, which was previously acquired by calling
S26_Sched2612_Ref reshDat a() , to acorrected value. The corrected value is computed by this function as
follows:

corrected_value = (raw value - offset) * scale - tare

Theoffset, scal eandtare values, and consequently the engineering units that apply to the returned value,
must have been previously established by calling S26_2612_Regi st er Zer o(), S26_2612_Regi st er Span() and
S26_2612_Regi sterTare(), or set with S26_2612_Set Cal i brati ons().

Note that this function performs its action when called, unlike many other middiware functions that simply
schedule future actions.

/'l Get calibrated value on the 2612 at MM nunber 0, | OM port 10, channel 2.
S26_2612 Cet Cal i bratedVal ue(0, 10, 2, sanple_pointer);

7.6.11 S26 2612 GetOffset()
Returnsthe of f set value for one channel on amodel 2612 |IOM.

Prototype:

Returns:
Benchmark:

Notes:

Example:

doubl e S26_2612_Cet Of f set (u32 hbd, |1 OWORT |onPort, u8 chan);

Parameter Type Description

hbd u32 MM handle.

I onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.
chan u8 The channel number that isto be registered. Legal values range from O to 3.
Offset value.

<< 0.1 ms (no network transactions used).

This function returns the of f set calibration parameter from a previously calibrated channel. The returned value
can be used by S26_2612_Set Cal i br ati ons() to restore a channel calibration without having to perform a
physical calibration.

Note that this function performs its action when called, unlike many other middiware functions that simply
schedule future actions.

/'l Get offset value on the 2612 at MM nunber O, | OM port 10, channel 2.
S26_2612_CetOffset(0, 10, 2);

7.6.12 S26 2612 GetScale()

Returnsthe scal e value for one channel on amodel 2612 [OM.

Prototype:

Returns:

Benchmark:

doubl e S26_2612_Cet Scal e(u32 hbd, |1 OWORT |onPort, u8 chan);

Parameter Type Description

hbd u32 MM handle.

I oPor t u8 The IOM port number (on the MM) to which the target IOM is connected.
chan u8 The channel number that isto be registered. Legal values range from 0 to 3.
Scale value.

<< 0.1 ms (no network transactions used).

Sensoray 2600 Programming Guide Gateway Action Scheduling

Notes:

Example:

Thisfunction returnsthescal e calibration parameter from a previously calibrated channel. The returned value can
be used by S26_2612_Set Cal i br ati ons() to restore a channel calibration without having to perform a physical
calibration.

Note that this function performs its action when called, unlike many other middiware functions that simply
schedule future actions.

/'l Get scale value on the 2612 at MM nunmber 0, | OM port 10, channel 2.
S26_2612_Cet Scal e(0, 10, 2);

7.6.13 S26 2612 _GetTare()
Returnsthet ar e value for one channel on model 2612 IOM.

Prototype:

Returns:
Benchmark:

Notes:

Example:

doubl e S26_2612_GCet Tare(u32 hbd, | OWORT lonPort, u8 chan);

Parameter Type Description

hbd u32 MM handle.

| oPor t u8 The IOM port number (on the MM) to which the target IOM is connected.
chan u8 The channel number that isto be registered. Legal values range from 0 to 3.
Tarevalue.

<< 0.1 ms (no network transactions used).

Thisfunction returnsthe t ar e calibration parameter from a previously calibrated channel. The returned value can
be used by S26_2612_Set Cal i br ati ons() to restore a channel calibration without having to perform a physical
calibration.

Note that this function performs its action when called, unlike many other middiware functions that simply
schedule future actions.

/'l Get tare value on the 2612 at MM nunber 0, | OM port 10, channel 2.
S26_2612_Cet Tare(0, 10, 2);

7.6.14 S26 2612 SetCalibrations()

Sesthe middlewareof f set, scal e and t ar e valuesfor one channel on amodel 2612 |OM.

Prototype:

Returns:
Benchmark:

Notes:

u32 S26_2612_Set Cal i brations(u32 hbd, | OWORT |onPort, u8 chan, double O fset, double Scale,
doubl e Tare);

Parameter Type Description

hbd u32 MM handle.

| omPor t u8 The IOM port number (on the MM) to which the target IOM is connected.
chan u8 The channel number that isto be registered. Legal values range from 0 to 3.
O f set doubl e Theof f set value

Scal e doubl e The scal e value

Tare doubl e Thet ar e value

Error code as described in section 5.5. Zero is returned if the operation was successful.
<< 0.1 ms (no network transactions used).

Thisfunction establishes al of the calibration values for the specified channel without having to perform aphysical
calibration. Thisisuseful in situations where a physical calibration need be performed only one time. For
example, a physical calibration could be performed once and the calibration values could then be obtained by
caling S26_2612_Get Of f set (), S26_2612_Get Of f set (), and S26_2612_Get O f set () . Later, after the

Sensoray 2600 Programming Guide Gateway Action Scheduling

Example:

middleware has been closed and reopened, this function can be called to restore the calibration values. In many
applications, it is useful to store and retrieve the calibration values from the 2412’ sinternal EEPROM by calling
S26_2612_SaveCal i brations() and S26_2612_ RestoreCal i brati ons().

Note that this function performs its action when called, unlike many other middiware functions that simply
schedule future actions.

/1 Set all calibration values on the 2612 at MM nunber 0, |OM port 10, channel 2.
S26_2612 SetCal i brations(0, 10, 2, O fset, Scale, Tare);

7.6.15 S26 2612 SaveCalibrations()
Saves one channel’ s calibration values to internal EEPROM on model 2612 |OM.

Prototype:

Returns:

Benchmark:

Notes:

Example:

u32 S26_2612_SaveCal i brations(u32 hbd, 1 OWORT |onPort, u32 nmsec, u8 chan);

Parameter Type Description

hbd u32 MM handle.

| oPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

nsec u32 Maximum time to wait for the gateway response packet, in milliseconds, before declaring a
time-out.

chan u8 The channel number that isto be registered. Legal values range from 0 to 3.

Error code as described in section 5.5. Zero is returned if the operation was successful.
12 ms.

This function copies the calibration values from internal middleware buffers to the 2612 module’ s EEPROM.
L ater, the values can be retrieved from the module’ s EEPROM by calling S26_2612_Rest oreCal i brati ons() .

Note that this function performs its action when called, unlike many other middiware functions that simply
schedule future actions.

/1l Save calibrations on the 2612 at MM nunber 0, |OM port 10, channel 2.
S26_2612_SaveCal i brations(0, 10, 1000, 2);

7.6.16 S26 2612 RestoreCalibrations()
Restores one channel’ s calibration values from a 2612 IOM’s EEPROM.

Prototype:

Returns:
Benchmark:

Notes:

u32 S26_2612_RestoreCalibrations(u32 hbd, 1OWORT lonPort, u32 nmsec, u8 chan);

Parameter Type Description

hbd u32 MM handle.

| onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

nsec u32 Maximum time to wait for the gateway response packet, in milliseconds, before declaring a
time-out.

chan u8 The channel number that isto be registered. Legal values range from 0 to 3.

Error code as described in section 5.5. Zero is returned if the operation was successful.
7 ms.

This function copies the calibration values from the 2612 module’s EEPROM to internal middleware buffers, thus
activating the new calibration values. It is assumed that S26_2612_SaveCal i br at i ons() was previously called to
store the calibration values in the EEPROM.

Note that this function performs its action when called, unlike many other middiware functions that simply
schedule future actions.

Sensoray 2600 Programming Guide Gateway Action Scheduling

Example:

/1l Restore calibrations on the 2612 at MM nunber 0, | OM port 10, channel 2.

S26_2612 RestoreCalibrations(0, 10, 1000, 2);

7.7 Model 2620 Counter IOM

The functionsin this section are used to schedule IOM actions for Model 2620 4-channel Counter IOMs. These functions are
applicable only to Model 2620 IOMs. Any attempt to call these functions for other IOM types will result in a GAERR _| OMTIYPE
transaction error. Note that these functions only schedule |IOM actions into a transaction; they do not cause the actions to be
immediately executed.

7.7.1 Type-SpecificErrors

ThisIOM type has no type-specific IOM status flags.

7.7.2 S26_Sched2620_GetCounts()

Function:

Prototype:

Returns:
Benchmark:

Notes:

Example:

Example:

Schedul es the fetching of the latched counts from one counter channel on a model 2620 |OM.

u32 S26_Sched2620_Cet Counts(XACT x, |OWPORT lonPort, u8 chan, u32 *value, ul6 *tstanp);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

I onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The counter channel number that isto be accessed. Legal valuesrange from 0 to 3.
val ue u32 * Pointer to a 32-bit application buffer that is to receive the counts.

tstanp ulé * Pointer to a 16-bit application buffer that is to receive the time stamp. Specify zero if

you do not need the time stamp value.

Error code as described in section 5.5. Zero isreturned if the operation was successful.
1.1 mswhent st anp is zero, 1.6 mswhent st anp is non-zero.

The fetched val ue will be the value contained in the target counter’s data latch at the moment the action executes
on the IOM. If tstamp is non-zero, the time stamp value will also be fetched; the fetched time stamp value will be
the value contained in the target counter’ s time stamp latch at the moment the action executes on the IOM.

The time stamp value should be fetched only if it is needed as extra communication overhead is required to fetch
thisvalue.

/'l Get latched counts fromcounter 3 on the 2620 at MM nunber 0, | OM port 12.
u32 counts;

void *x = S26_SchedOpen(0, 1);

S26_Sched2620_Get Counts(x, 12, 3, &counts, 0);

S26_SchedExecute(x, 1000, 0);

/1 Get counts and tinmestanp fromcounter 3 on the 2620 at MM nunmber 0, | OM port 12.
u32 counts;

ulé tstanp;

void *x = S26_SchedOpen(0, 1);

S26_Sched2620_Get Counts(x, 12, 3, &counts, &tstanp);

S26_SchedExecute(x, 1000, 0);

7.7.3 S26_Sched2620_GetStatus()

Function:

Schedul es the fetching of the status of one counter channel from a model 2620 |OM.

Sensoray 2600 Programming Guide Gateway Action Scheduling

Prototype:

Returns:
Benchmark:

Notes:

Example:

u32 S26_Sched2620_Cet St at us(XACT x, | OWPORT lonPort, u8 chan, ul6é *status);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

I onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The counter channel number that isto be accessed. Legal values range from 0 to 3.
st at us ule * Pointer to a 16-bit application buffer that is to receive the statusinfo.

The returned st at us value has the following format:

15 14 13 12 11 10 9 8 I 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 | QDE| LAT| GO | LOD| EXT| UF | OF | ZER

QDE: Quadrature decoder error. Thisbit is automatically UF: Counter underflowed. Thisbit isautomatically reset by
reset by this GetStatus action. this GetStatus action.

LAT: Counter core was latched. Thisbit isautomatically OF: Counter overflowed. Thisbit isautomatically reset by
reset by a GetCounts action. this GetStatus action.

GO: Counter was enabled by atrigger. ZER: Counter value is now zero.

LOD: Counter was pre-loaded. This bit is automatically All other bits are reserved for future use.

reset by this GetStatus action.
EXT: Counter extension bit 32.

Error code as described in section 5.5. Zero isreturned if the operation was successful.
0.9ms.
The format of the fetched status word is described in the Model 2600 Family Instruction Manual.

/'l Get status info fromcounter 3 on the 2620 at MM nunber 0, | OM port 12.
ul6é status;

void *x = S26_SchedOpen(0, 1);

S26_Sched2620_Get Status(x, 12, 3, &status);

S26_SchedExecute(x, 1000, 0);

7.7.4 S26_Sched2620_SetControlReg()

Function:

Prototype:

Returns:
Benchmark:

Notes:

Triggers a data transfer action for one counter channel on amodel 2620 IOM.

u32 S26_Sched2620_Set Cont rol Reg(XACT x, | OWPORT lonPort, u8 chan, u8 Dataval);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

| onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The counter channel number that isto be accessed. Legal values range from 0 to 3.
Dat aVal u8 Datatransfer action to be triggered:

CTC_TRI G_PRELOAD (1) - Preload counter core.
CTC_TRI G_LATCH (2) - Latch counter core.

Error code as described in section 5.5. Zero isreturned if the operation was successful.
0.8 ms.

UseCTC_TRI G_LATCHto manually transfer the core’s counts to the data latch just before reading the counter. This
must be done, for example, when a channel is configured to operate with a quadrature encoder. This should not be

Sensoray 2600 Programming Guide Gateway Action Scheduling

done, however, if you have configured a channel so that it’s core is automatically transferred to the latch in
response to an event (e.g., active index input).

Use CTC_TRI G_PRELOADto manually transfer the PreloadO register into the counter core.
Example: /1 Latch channel 3 counter core on the 2620 at MM nunber O, |1OM port 12.
void *x = S26_SchedOpen(0, 1);

S26_Sched2620_Set Control Reg(x, 12, 3, CTC_TRI G_LATCH);
S26_SchedExecute(x, 1000, 0);

7.7.5 S26_Sched2620 SetCommonControl()

Function: Schedules the programming of the common control register for al counter channels on a model 2620 |OM.

Prototype: u32 S26_Sched2620_Set CommonControl (XACT x, | OMPORT lonPort, ul6é gperiod, u8 tstanp);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

I onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

gperi od ulé Gate period, in milliseconds, for the time gate generator. Thisisthe gate time applied

to all channels operating as frequency counters that use the internal time gate
generator. Any even value from 2 to 32766 may be specified, resulting in gate times
from 2 milliseconds to 32.766 seconds.

tstanp u8 Timestamp resolution. May be set to one of the following values:
0 =1 microsecond.
1 =10 microseconds.
2 =100 microseconds.
3 =1 millisecond.

Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.

Benchmark: 0.9 ms.

Example: /1l Set gate period to 1 second, and tinmestanp resolution to 10 nicroseconds
/1 on the 2620 at MM nunmber 0, | OM port 12.
void *x = S26_SchedOpen(0, 1);
S26_Sched2620_Set CormonControl (x, 12, 1000, 1);
S26_SchedExecute(x, 1000, 0);

7.7.6 S26_Sched2620 SetModeEncoder ()

Function: Schedules the programming of the operating mode of one counter channel on a model 2620 |OM.

Prototype: u32 S26_Sched2620_Set ModeEncoder (XACT x, | OWORT |onPort, u8 chan, ul6 xp, ul6 pl, ulé m);

Parameter Type Description
X void * Transaction handle obtained from S26_SchedQpen() .
| onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

Sensoray 2600 Programming Guide Gateway Action Scheduling

Returns:
Benchmark:

Notes:

Example:

Parameter Type Description

chan u8 The counter channel number that isto be accessed. Legal values range from 0 to 3.
Xp ulé Index pin polarity: 1 = active low, 0 = active high.

pl ulé Preload upon index leading edge: 0 = disable, 1 = enable.

m ulé Clock mode. Set to one of these values:

0 - quadrature x1, clock on A rising edge, B sets direction.
1 - quadrature x1, clock on A falling edge, B sets direction.
2 - quadrature x2, clock on both A edges, B sets direction.
3 - quadrature x4, clock on all A and B edges.

4 - mono, clock on A rising edge, B sets direction.

5 - mono, clock on A falling edge, B sets direction.

6 - mono, clock on both A edges, B sets direction.

Error code as described in section 5.5. Zero isreturned if the operation was successful.
1.5ms.

This function configures a counter channel so that it will interface to either a quadrature-encoded or a single-phase
clock source, with optional index input for preload triggering.

/1 Configure counter 3 as an encoder interface on the 2620 at MM nunber 0, | OM port 12.
/'l Assunes: quadrature encoder, x4 clock multiplier, no index-triggered prel oads.

void *x = S26_SchedOpen(0, 1);

S26_Sched2620_Set ModeEncoder (x, 12, 3, 0, 0, 3); /] Set node.

S26_SchedExecute(x, 1000, 0);

7.7.7 S26_Sched2620 SetM odeFregM eas()

Function:

Prototype:

Returns:
Benchmark:

Notes:

Schedul es the programming of the operating mode of one counter channel on a model 2620 |OM.

u32 S26_Sched2620_Set ModeFregMeas(XACT x, | OWPORT lonPort, u8 chan, ul6 igate);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

I onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The counter channel number that isto be accessed. Legal values range from 0 to 3.

i gate ulé Time gate signal source: 0 = external signal on index input, 1 = internal gate generator.

Error code as described in section 5.5. Zero isreturned if the operation was successful.
20ms.

Thisfunction configures a counter channel so that it will measure the frequency of an external digital signal applied
to the Cl kA input.

A periodic time gate signal isrequired. Notethat it isthe period of the gate signal (vs. itstime in the active state)
that determines the sampling time for frequency measurement. The gate time is defined as the time between
consecutive rising edges of the gate signal.

The gate signal may be derived from an external signal that is applied to the index input pin or from the internal
time gate generator that is shared by all counter channels. When using the internal time gate generator, the gate
generator should be configured before calling this function; see S26_Sched2620_Set ConmonCont rol () for
details. When using an external time gate generator, the index polarity defaultsto active high so that sample
intervals begin in gate (index) rising edges.

The channel’ s prel oad registers are automatically configured by this function. The preload registers should not be
modified while frequency measurement mode isin effect.

Sensoray 2600 Programming Guide Gateway Action Scheduling

Example: /1 Configure counter 3 as a frequency counter on the 2620 at MM number 0, |OM port 12.
/1 Assumes: using previously configured internal time gate generator.
void *x = S26_SchedOpen(0, 1);
S26_Sched2620_Set MbdeFregMeas(x, 12, 3, 1); /1 Set node.
S26_SchedExecute(x, 1000, 0);

7.7.8 S26_Sched2620 SetM odePeriodM eas()
Function: Schedules the programming of the operating mode of one counter channel on a model 2620 |OM.

Prototype: u32 S26_Sched2620_Set ModePeri odMeas(XACT x, | OVWPORT lonPort, u8 chan, ul6é ActLowX);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

I onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The counter channel number that isto be accessed. Legal values range from 0 to 3.
Act LowX ulé Index pin polarity: 1 = active low, 0 = active high. This doesn’t matter unless one

signal edge has more jitter than the other edge.

Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.
Benchmark: 2.0 ms.

Notes: This function configures a counter channel so that it will measure the period of an external digital waveform
applied to the i ndex input.

Example: /1 Configure counter 3 as a frequency counter on the 2620 at MM number 0, | OM port 12.
/1 Assunes: both signal edges have sinilar jitter, so polarity is don't care.
void *x = S26_SchedOpen(0, 1);
S26_Sched2620_Set ModePeri odMeas(x, 12, 3, 0); /] Set npde.
S26_SchedExecute(x, 1000, 0);

7.7.9 S26_Sched2620 SetM odePulseGen()
Function: Schedules the programming of the operating mode of one counter channel on a model 2620 |OM.

Prototype: u32 S26_Sched2620_Set ModePul seGen(XACT x, | OWORT |onPort, u8 chan, ul6 xp, ul6 pl, ul6 op);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

| onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The counter channel number that isto be accessed. Legal values range from 0 to 3.

Xp ulé Index pin polarity: 1 = active low, 0 = active high. Thisisa“don’t care” if pl issetto
zero.

pl ulé Hardware triggered by index input: 0 = disable, 1 = enable. Notethat a pulse can
always be triggered by software.

op ulé Output pin polarity: 1 = active low, 0 = active high.

Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.

Benchmark: 1.5 ms.

Notes: Thisfunction configures a counter channel so that it will generate a single output pulse in response to a hardware or
software trigger. The duration of the output pulse is determined by the value stored in the PreloadO register.

Sensoray 2600 Programming Guide Gateway Action Scheduling

Example:

/'l Configure counter 3 as a pul se generator on the 2620 at MM nunber 0, |OM port 12.
/'l Assunes: active | ow output pulse, hardware triggered by active | ow signal.

void *x = S26_SchedOpen(0, 1);

S26_Sched2620_Set MbdePul seGen(x, 12, 3, 1, 1, 3); /1 Set npde.
S26_SchedExecute(x, 1000, 0);

7.7.10 S26 _Sched2620 SetM odePulseM eas()

Function:

Prototype:

Returns:
Benchmark:

Notes:

Example:

Schedul es the programming of the operating mode of one counter channel on a model 2620 |OM.

u32 S26_Sched2620_Set ModePul seMeas(XACT x, | OWPORT |onPort, u8 chan, ul6 ActLowX);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

I onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The counter channel number that isto be accessed. Legal values range from 0 to 3.
Act LowX uleé Index pin polarity: 1 = active low, 0 = active high.

Error code as described in section 5.5. Zero isreturned if the operation was successful.
1.5ms.

This function configures a counter channel so that it will measure the width of pulses applied to thei ndex input.
When a measurement is completed, the result is latched and the next measurement begins automatically. The most
recently acquired measurement value may be read from the latch at any time.

The channel’ s prel oad registers are automatically configured by this function. The preload registers should not be
modified while pulse width measurement mode is in effect.

/1 Configure counter 3 for pulse wi dth neasurenment on the 2620 at MM nunber 0, | OM port 12.
/'l Assunes: active high pulse is being neasured.

void *x = S26_SchedOpen(0, 1);

S26_Sched2620_Set MbdePul seMeas(x, 12, 3, 0); /] Set node.

S26_SchedExecute(x, 1000, 0);

7.7.11 S26 Sched2620 SetM odePwmGen()

Function:

Prototype:

Returns:
Benchmark:

Notes:

Schedul es the programming of the operating mode of one counter channel on a model 2620 |OM.

u32 S26_Sched2620_Set ModePwnGen(XACT x, | OVMPORT lonPort, u8 chan, ul6 op);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

I onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The counter channel number that isto be accessed. Legal values range from 0 to 3.
op ulé Output pin polarity: 1 = active low, 0 = active high.

Error code as described in section 5.5. Zero isreturned if the operation was successful.
1.5ms.

S26_Sched2620_Set ModePwnzen() configures a counter channel so that it will toggle its output signal at periodic
intervals, with programmable period and duty cycle. This can be used to generate a continuous train of output
pulses in which both the pulse width and time gap between pulsesis programmable.

Sensoray 2600 Programming Guide Gateway Action Scheduling

Example:

Pulse width and gap times are determined by the values stored in the Preload registers. Preloadl specifies the
duration of the pulse, and PreloadO specifies the time interval between pulses. Preload values are related to time as
follows: value = 10 * t - 1, wheretisspecifiedin microseconds. For example, the value 99 correspondsto 10
microseconds.

The application should program theinitial pulse width and gap times into the preload registers before calling this
function. After calling S26_Sched2620_Set ModePwnzen() , the pulse width and/or gap times may be changed at
any time by programming new values into the associated preload registers.

/1 Configure counter 3 for pwm generation on the 2620 at MM nunber 0, | OM port 12.
/'l Settings: active high output pin, 2KHz @2% duty cycl e.
void *x = S26_SchedOpen(0, 1);

S26_Sched2620_Set Prel oad(x, 12, 3, 1, 99); /1 10.0 us pul se wi dth.
S26_Sched2620_Set Prel oad(x, 12, 3, 0, 4899); // 490.0 us gap tine.
S26_Sched2620_Set ModePwntzen(x, 12, 3, 0); /] Set nbde.

S26_SchedExecute(x, 1000, 0);

7.7.12 S26_Sched2620_SetM ode()

Function:

Prototype:

Schedul es the programming of the operating mode of one counter channel on a model 2620 |OM.

u32 S26_Sched2620_Set Mode(XACT x, | OWPORT lonPort, u8 chan, ul6 node);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

I onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The counter channel number that isto be accessed. Legal values range from 0 to 3.
node ulé Value to be written to the mode register.

Sensoray 2600 Programming Guide Gateway Action Scheduling

Returns:
Benchmark:

Notes:

Example:

The node valueis acollection of bit flags:

15 14 13 12 11 10 9 8 7

»

5 4 3 2 1 0

RUN OML| OMD| XP | PL1| PLO

LAT| CET| OP | M2

ML | M | CD1 PLM XC

RUN: Enable channel operations.

0 - (default upon modul e reset) Halt channel, force coreto
zero (including bit 32), force status bits to their default
states, reset trigger latches. Preload and latch registers
are not modified. After writing to the mode register
with this bit cleared, it is necessary to writeto it again
with this bit set to start the channel running.

1 - Run or continue to run in the specified mode.
OM: Output pin's mode (2-bit field):
0 - Counter bit 31.
1 - Counter bit 32 (toggles at zero counts).
2 - Active when counts are zero.
3 - Active during counter under/overflow.
XP: Index input polarity:
0 - Active high.
1- Activelow.
PL: Preload trigger (2-bit field):
0 - Preload on soft trigger only.
1 - Preload on index leading edge or soft trigger.
2 - Preload on zero counts reached or soft trigger.
3 - Reserved.
LAT: Latch trigger:
0 - Latch on soft trigger only.
1 - Latch on index leading edge or soft trigger.
CET: Count enable trigger:
0 - Enable upon configuration (no trig needed).
1 - Enable on index leading edge.

OP: Output pin's polarity:

0 - Active high.

1- Activelow.
M: Mode (3-bit field). Modes 0-3 use quadrature-encoded
two-phase clock, modes 4-6 use single-phase clock, and
mode 7 uses theinternal clock:

0 - quad x1, clock onrising A.

1- quad x1, clock on falling A.

2 - quad x2, clock on either edge of A.

3 - quad x4, clock on either edge of A or B.

4 - mono, clock onrising A, B controls count direction.

5 - mono, clock on falling A, B controls count direction.

6 - mono, clock on either edge A, B controls count
direction.

7 - interna clock (10MHz), A isthe gate (enables
counting while asserted), B controls count direction.

CD: Count disable trigger:
0 - Never disabled by any trigger.
1 - Disable on index trailing edge (if enabled).
2 - Disable when zero counts reached.
PLM: Select preload register:
0 - Only preload register O.
1 - Use both preload registers.
XC: Index source:

0 - External Index pin.
1 - Internal free-running gate generator.

Error code as described in section 5.5. Zero isreturned if the operation was successful.

0.9 ms.

This function may be used to establish any arbitrary operating mode for a counter channel. It is provided so that
applications can tailor the counter operating mode in cases where the other mode setting functions, such as
S26_Sched2620_Set ModeFr eqMeas() , do not provide sufficient control over counter operating parameters.

The new mode should be invoked by calling S26_Sched2620_Set Mode() with the RUN flag negated so that the
counter will halt while the mode is being changed; this guarantees that the channel will be properly initialized
regardless of the physical state of its1/O pins. S26_Sched2620_Set Mode() should then be called again with RUN
asserted to enable the counter channel to run in the new mode.

/1 Set counter 3 operating node to 0x0001 on the 2620 at

void *x = S26_SchedOpen(0, 1);
S26_Sched2620_Set Mode(x, 12, 3, 0x0001);
S26_Sched2620_Set Mode(x, 12, 3, 0x1001);
S26_SchedExecute(x, 1000, 0);

// Halt channel
// Run in the new node.

MM nunber O, | OM port 12.

and set node.

Sensoray 2600 Programming Guide

Gateway Action Scheduling

7.7.13 S26 _Sched2620 SetPreload()

Function: Schedules the programming of a preload register for one counter channel on a model 2620 |OM.

Prototype: u32 S26_Sched2620_Set Prel oad(XACT x, | OWPORT |onPort, u8 chan, u8 reg, u32 value);

Parameter Type Description
X void * Transaction handle obtained from S26_SchedQpen() .
| oPor t u8 The IOM port number (on the MM) to which the target IOM is connected.
chan u8 The counter channel number that isto be accessed. Legal values range from 0 to 3.
reg u8 Selects the preload register that isto be written to: 0 or 1.
val ue u32 32-bit value to be written to the preload register.
Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.

Benchmark: 1.1 ms.

Example: /1 Set counter 3's preloadO reg to 0x0001 on the 2620 at MM number 0, |1 OM port 12.
void *x = S26_SchedOpen(0, 1);
S26_Sched2620_Set Prel oad(x, 12, 3, 0, 0x0001);
S26_SchedExecute(x, 1000, 0);

7.8 Model 2650 Relay |OM

The functionsin this section are used to schedule IOM actions for Model 2650 8-channel Relay IOMs. These functions are
applicable only to Model 2650 IOMs. Any attempt to call these functions for other IOM types will result in a GAERR _| OMTIYPE
transaction error. Note that these functions only schedule |IOM actions into a transaction; they do not cause the actions to be
immediately executed.

7.8.1 Type-SpecificErrors

In addition to the common IOM status bit flags (STATUS_RST and STATUS_CERR), this IOM type supports the following
type-specific flags. If any of these flags are asserted, a transaction error of type GAERR_| OMSPECI FI C will be generated:

Symbolic Name Description

STATUS_2650_DRVR One or more relay coil driversfailed to go to the commanded state. This may
be caused by adriver fault, ashorted relay coil or aserial data stream problem.
This flag can be cleared by invoking aCl ear St at us action.

STATUS 2650 _STRM An error was detected in the serial data stream that is used to control the relay
drivers and monitor driver states. Thisflag can be cleared by invoking a
Cl ear St at us action.

7.8.2 S26_Sched2650 Getlnputs()
Function: Schedules the fetching of the measured states of all eight relay coil drivers on a model 2650 |OM.

Prototype: u32 S26_Sched2650_Cet | nputs(XACT x, | OVPORT lonPort, u8 *states);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

| omPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

states u8 * Pointer to a 1-byte application buffer that is to receive the measured states of the relay

drivers. Each bit is associated with one relay channel. For example, bit 7 is associated
with relay channel 7. Any bit set to one indicates the associated channel is set to the
active state; any bit set to zero indicates the channel is set to the inactive state.

Sensoray 2600 Programming Guide Gateway Action Scheduling

Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.
Benchmark: 0.8 ms.

Notes: Each relay channel includes a monitoring circuit that enables the on-board processor to determine the physical state
of therelay coil driver. Thisscheduled action will fetch the monitored physical state of each coil driver, evenif the
relay is not present or its coil winding has opened.

Coil driver states are acquired periodically at two millisecond intervals. Consequently, st at es may not

accurately reflect the state of a coil driver that has changed its physical state within the last two milliseconds.
Example: /1 Get all relay driver coil states fromthe 2650 at MM nunber O, | OM port 9.

u8 states;

void *x = S26_SchedOpen(0, 1);

S26_Sched2650_Cet I nputs(x, 9, &states);

S26_SchedExecute(x, 1000, 0);

7.8.3 S26_Sched2650 GetOutputs()
Function: Schedules the fetching of the programmed states of all eight relays on a model 2650 |OM.

Prototype: u32 S26_Sched2650_Get Qut put s(XACT x, | OMPORT lonPort, u8 *states);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

| onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

states ug8 * Pointer to a 1-byte application buffer that is to receive the programmed states of the

relay drivers. Each bit is associated with one relay channel. For example, bit 7 is
associated with relay channel 7. Any bit set to one indicates the associated channel is
set to the active state; any bit set to zero indicates the channel is set to the inactive
state.

Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.

Benchmark: 0.8 ms.

Example: /1 Get all programmed relay driver states fromthe 2650 at MM nunber 0, |OM port 9.
u8 states;
void *x = S26_SchedOpen(0, 1);

S26_Sched2650_CGet Qutputs(x, 9, &states);
S26_SchedExecute(x, 1000, 0);

7.8.4 S26_Sched2650 SetOutputs()
Function: Schedules the programming of all eight relays on amodel 2650 IOM.

Prototype: u32 S26_Sched2650_Set Qut put s(XACT x, | OMPORT lonPort, u8 *states);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

| onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.
states ug8 * Pointer to a 1-byte application buffer that contains the desired states of the relay

drivers. Each bit is associated with one relay channel. For example, bit 7 is associated
with relay channel 7. Any bit set to one indicates the associated channel is set to the
active state; any bit set to zero indicates the channel is set to the inactive state.

Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.

Benchmark: 0.8 ms.

Sensoray 2600 Programming Guide Gateway Action Scheduling

Example: /'l Programall relay driver states on the 2650 at MM nunmber 0O, |OM port 9.
u8 states = 0Ox5A; /1 The desired relay states.
void *x = S26_SchedOpen(0, 1);
S26_Sched2650_Set Qut puts(x, 9, &states);
S26_SchedExecute(x, 1000, 0);

7.9 Mode 2652 Solid-State Relay |OM

Thefunctionsin this section are used to schedule |IOM actions for Model 2652 8-channel Solid-State Relay IOMs. These functions
are applicable only to Model 2652 IOMs. Any attempt to call these functions for other IOM types will result in a GAERR_| OMTYPE
transaction error. Note that these functions only schedule |IOM actions into a transaction; they do not cause the actions to be
immediately executed.

7.9.1 Type-SpecificErrors

In addition to the common IOM status bit flags (STATUS_RST and STATUS_CERR), this IOM type supports the following
type-specific flags. If any of these flags are asserted, a transaction error of type GAERR_| OMSPECI FI C will be generated:

Symbolic Name Description

STATUS 2652 _STRM An error was detected in the serial data stream that is used to control the SSR
output drivers. Thisflag can be cleared by invoking aCl ear St at us action.

7.9.2 S26_Sched2652_Getlnputs()
Function: Schedules the fetching of the physical states of all eight SSR channels on a model 2652 |0OM.

Prototype: u32 S26_Sched2652_Cet | nputs(XACT x, | OVPORT lonPort, u8 *states);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

| onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

states ug8 * Pointer to a 1-byte application buffer that is to receive the physical states of the SSR

channels. Each bit is associated with one channel. For example, bit 7 is associated
with channel 7. Any bit set to one indicates the associated channel isin the active
state; any bit set to zero indicates the channel isin the inactive state.

Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.
Benchmark: 0.8 ms.

Notes: Each SSR channel includes a monitoring circuit that enables the on-board processor to determine the physical state
of the channel. This scheduled action will fetch the monitored physical state of each channel, no matter whether
the channel is driven by its own output driver or by an external signal through an input SSR.

Physical states are sampled periodically at two millisecond intervals and passed through a 10 millisecond debounce
filter. Consequently, st at es may not accurately reflect the state of a channel that has changed its physical state
within the last twelve milliseconds.

Example: /'l Get all physical SSR states fromthe 2652 at MM nunber 0, |OM port 9.
u8 st ates;
void *x = S26_SchedOpen(0, 1);
S26_Sched2652_Cet I nputs(x, 9, &states);
S26_SchedExecute(x, 1000, 0);

7.9.3 S26_Sched2652_GetM odes()

Function: Schedules the fetching of the operating modes for all SSR channels on a model 2652 |OM.

Sensoray 2600 Programming Guide Gateway Action Scheduling

Prototype: u32 S26_Sched2652_Cet Modes(XACT x, | OVPORT lonPort, u8 *nodes);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

I onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

nodes ug8 * Pointer to a 1-byte application buffer that is to receive the channel mode info. The

byte indicates the operating modes for SSR channels 0 to 7. Each bit is associated
with achannel number. For example, bit 4 is associated with channel 4. A bit isset to
one when operating in the PWM mode, or to zero in the Standard mode.

Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.

Benchmark: 0.8 ms.

Example: /1 Get all SSR channel operating nodes fromthe 2652 at MM nunber 0, |OM port 2.
u8 nodes;
void *x = S26_SchedOpen(0, 1);

S26_Sched2652_CGet Modes(x, 2, &nodes);
S26_SchedExecute(x, 1000, 0);

7.9.4 S26 Sched2652 GetOutputs()
Function: Schedules the fetching of the programmed states of all eight SSR drivers on amodel 2652 IOM.

Prototype: u32 S26_Sched2652_GCet Qut put s(XACT x, | OMPORT lonPort, u8 *states);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

I oPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

states ug8 * Pointer to a 1-byte application buffer that is to receive the programmed states of the

SSR output drivers. Each bit is associated with one SSR channel. For example, bit 7
is associated with channel 7. Any bit set to one indicates the associated channel is
programmed to the active state; any bit set to zero indicates the channel is programmed
to the inactive state.

Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.
Benchmark: 0.8 ms.

Example: /'l Get all programmed SSR driver states fromthe 2652 at MM number 0, |OM port 9.
u8 states;
void *x = S26_SchedOpen(0, 1);
S26_Sched2652_Get Qutputs(x, 9, &states);
S26_SchedExecute(x, 1000, 0);

7.9.5 S26_Sched2652_GetPwmRatio()
Function: Schedules the fetching of the PWM ratio for one SSR channel from amodel 2652 I0OM.
Prototype: u32 S26_Sched2652_GCet PmrRati o(XACT x, | OWORT lonPort, u8 chan, u8 *OnTinme, u8 *OfTinme);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

Sensoray 2600 Programming Guide Gateway Action Scheduling

Parameter Type Description

| omPor t u8 The IOM port number (on the MM) to which the target IOM is connected.
chan u8 The SSR channel number that isto be queried. Legal valuesrange from 0to 7.
OnTi e ug8 * Pointer to a 1-byte application buffer that is to receive the programmed PWM on time

expressed in 2 msec increments.

O f Ti me ug * Pointer to a 1-byte application buffer that is to receive the programmed PWM off time
expressed in 2 msec increments.

Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.
Benchmark: 0.9 ms.

Example: [/ Fetch the PWMratio for SSR channel 5 on the 2652 at MM nunber 0, | OM port 2.
u8 ontine;
u8 offtine;
void *x = S26_SchedOpen(0, 1);
S26_Sched2652_Get PwRatio(x, 2, 5, &ontinme, &offtime);
S26_SchedExecute(x, 1000, 0);

7.9.6 S26_Sched2652_SetM odes()
Function: Schedules the programming of the operating modes for all SSR channels on a model 2652 |IOM.

Prototype: u32 S26_Sched2652_Set Modes(XACT x, | OVPORT lonPort, u8 *nodes);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

I omPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

nodes u8 * Pointer to a 1-byte application buffer that contains the channel mode flags. The byte

indicates the operating modes for SSR channels 0 to 7. Each bit is associated with a
channel number. For example, bit 4 is associated with channel 4. Set a bit to one to
operate in the PWM maode, or to zero to operate in the Standard mode.

Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.
Benchmark: 0.8 ms.

Example: /1 Set all SSR channel operating nodes on the 2652 at MM nunber 0, | OM port 2.
/1 Channels 0 to 5: Standard node, channels 6 and 7: PWM node.
u8 nodes = 0xCO;
void *x = S26_SchedOpen(0, 1);
S26_Sched2652_Set Modes(x, 2, &nodes);
S26_SchedExecute(x, 1000, 0);

7.9.7 S26_Sched2652 SetOutputs()
Function: Schedules the programming of all eight SSR output drivers on amodel 2652 |OM.

Prototype: u32 S26_Sched2652_Set Qut put s(XACT x, | OMPORT lonPort, u8 *states);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

| omPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

states u8 * Pointer to a 1-byte application buffer that contains the desired states of the SSR output

drivers. Each bit is associated with one SSR channel. For example, bit 7 is associated
with channel 7. Any bit set to one indicates the associated channel is to be set to the
active state; zero indicates the channel isto be set to the inactive state.

Sensoray 2600 Programming Guide Gateway Action Scheduling

Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.
Benchmark: 0.8 ms.
Example: /'l Programall SSR driver states on the 2652 at MM nunber 0, |OM port 9.
u8 states = 0Ox5A; /1 The desired relay states.
void *x = S26_SchedOpen(0, 1);

S26_Sched2652_Set Qutputs(x, 9, &states);
S26_SchedExecute(x, 1000, 0);

7.9.8 S26_Sched2652_SetPwmRatio()
Function: Schedules the programming of the PWM ratio for one SSR channel on amodel 2652 I0OM.

Prototype: u32 S26_Sched2652_Set PmrRati o(XACT x, | OWORT lonPort, u8 chan, u8 OnTinme, u8 OfTine);

Parameter Type Description
X void * Transaction handle obtained from S26_SchedQpen() .
I onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.
chan u8 The SSR channel number that isto be programmed. Legal valuesrange fromOto 7.
OnTi e u8 PWM on time, expressed in 2 msec increments, to be programmed.
O f Ti me u8 PWM off time, expressed in 2 msec increments, to be programmed.
Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.

Benchmark: 0.9 ms.

Example: /1 Set the PWMratio for SSR channel 5 on the 2652 at MM nunmber 0, | OM port 2.
/1 PWratio = on for 20 nsec, off for 30 nsec.
void *x = S26_SchedOpen(0, 1);
S26_Sched2652_Set PwnRatio(x, 2, 5, 10, 15);
S26_SchedExecute(x, 1000, 0);

7.10 Model 2653 Solid-State Relay |OM

The functionsin this section are used to schedule IOM actions for Model 2653 16-channel Solid-State Relay IOMs. These
functions are applicable only to Model 2653 IOMs. Any attempt to call these functions for other IOM types will result in a
GWERR_| OMTYPE transaction error. Note that these functions only schedule IOM actions into a transaction; they do not cause the
actions to beimmediately executed.

7.10.1 Type-SpecificErrors

In addition to the common IOM status bit flags (STATUS_RST and STATUS_CERR), this IOM type supports the following
type-specific flags. If any of these flags are asserted, a transaction error of type GAERR_| OMSPECI FI C will be generated:
Symbolic Name Description

STATUS 2653 _STRM An error was detected in the serial data stream that is used to control the SSR
output drivers. Thisflag can be cleared by invoking aCl ear St at us action.

7.10.2 S26_Sched2653 Getlnputs()
Function: Schedules the fetching of the physical states of all SSR channels on amodel 2653 IOM.

Sensoray 2600 Programming Guide Gateway Action Scheduling

Prototype:

Returns:
Benchmark:

Notes:

Example:

u32 S26_Sched2653_Cet | nputs(XACT x, | OVPORT lonPort, u8 *states);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

I onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

states ug8 * Pointer to a 2-byte application buffer that is to receive the physical states of the SSR

channels. Thefirst byte corresponds to channels O (Isb) to 7 (msb), and the second
byte to channels 8 (Isb) to 15 (msb). A logic oneindicates the channel isin its active
state; logic zero indicates the inactive state.

Error code as described in section 5.5. Zero isreturned if the operation was successful.
0.9ms.

Each SSR channel includes a monitoring circuit that enables the on-board processor to determine the physical state
of the channel. This scheduled action will fetch the monitored physical state of each channel, no matter whether
the channel is driven by its own output driver or by an external signal through an input SSR.

Physical states are sampled periodically at two millisecond intervals and passed through a 10 millisecond debounce
filter. Consequently, st at es may not accurately reflect the state of a channel that has changed its physical state
within the last twelve milliseconds.

/'l Get all physical SSR states fromthe 2653 at MM nunber 0, |OM port 9.
u8 states[2];

void *x = S26_SchedOpen(0, 1);

S26_Sched2653_CGet I nputs(x, 9, states);

S26_SchedExecute(x, 1000, 0);

7.10.3 S26_Sched2653_GetM odes()

Function:

Prototype:

Returns:
Benchmark:

Example:

Schedul es the fetching of the operating modes for all SSR channels on amodel 2653 I0M.

u32 S26_Sched2653_Cet Modes(XACT x, | OVPORT lonPort, u8 *nodes);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

| onPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

nodes ug8 * Pointer to a 2-byte application buffer that is to receive the SSR channel mode info.

The first byte corresponds to channels 0 (Isb) to 7 (msb), and the second byte to
channels 8 (Isb) to 15 (msb). A logic one indicates the channel is operating in PWM
mode; logic zero indicates Standard mode.

Error code as described in section 5.5. Zero isreturned if the operation was successful.
0.9ms.

/1 Get all SSR channel operating nodes fromthe 2653 at MM nunber 0, |OM port 2.
u8 nodes|[2];

void *x = S26_SchedOpen(0, 1);

S26_Sched2653_CGet Modes(x, 2, nodes);

S26_SchedExecute(x, 1000, 0);

7.10.4 S26_Sched2653 GetOutputs()

Function:

Schedul es the fetching of the programmed states of all SSR drivers on amodel 2653 IOM.

Sensoray 2600 Programming Guide m Gateway Action Scheduling

Prototype: u32 S26_Sched2653_GCet Qut put s(XACT x, | OMPORT lonPort, u8 *states);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

I omPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

states ug8 * Pointer to a 2-byte application buffer that is to receive the programmed states of the

SSR output drivers. Thefirst byte corresponds to channels 0 (Isb) to 7 (msb), and the
second byte to channels 8 (Isb) to 15 (msb). Any bit set to oneindicates the associated
channel is programmed to the active state; zero indicates the inactive state.

Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.

Benchmark: 0.9 ms.

Example: /'l Get all programmed SSR driver states fromthe 2653 at MM nunmber 0, | OM port 9.
u8 states[2];
void *x = S26_SchedOpen(0, 1);

S26_Sched2653_Get Qutputs(x, 9, states);
S26_SchedExecute(x, 1000, 0);

7.10.5 S26 _Sched2653 GetPwmRatio()
Function: Schedules the fetching of the PWM ratio for one SSR channel on a model 2653 |OM.

Prototype: u32 S26_Sched2653_Cet PmrRati o(XACT x, | OWORT lonPort, u8 chan, u8 *OnTinme, u8 *OfTinme);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

| oPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The SSR channel number that isto be queried. Legal valuesrange from 0to 7.

OnTi e u8 * Pointer to a 1-byte application buffer that is to receive the programmed PWM on time

expressed in 2 msec increments.

O f Ti me ug * Pointer to a 1-byte application buffer that is to receive the programmed PWM off time
expressed in 2 msec increments.

Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.
Benchmark: 0.9 ms.

Example: [/ Fetch the PWMratio for SSR channel 5 on the 2653 at MM nunber 0, | OM port 2.
u8 ontine;
u8 of ftine;
void *x = S26_SchedOpen(0, 1);
S26_Sched2653_Cet PwmRatio(x, 2, 5, &ontinme, &offtime);
S26_SchedExecute(x, 1000, 0);

7.10.6 S26_Sched2653_SetM odes()

Function: Schedules the programming of the operating modes for all SSR channels on a model 2653 |OM.

Sensoray 2600 Programming Guide Gateway Action Scheduling

Prototype: u32 S26_Sched2653_Set Modes(XACT x, | OVPORT lonPort, u8 *nodes);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

| oPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

nodes ug8 * Pointer to a 2-byte application buffer that contains the channel mode flags. Thefirst

byte corresponds to channels 0 (Isb) to 7 (msb), and the second byte to channels 8 (Isb)
to 15 (msh). Set abit to one to operate in the PWM mode, or to zero to operate in the
Standard mode.

Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.
Benchmark: 0.9 ms.

Example: /1 Set all SSR channel operating nodes on the 2653 at MM nunber 0, | OM port 2.
/1 Channels 6 and 7: PWM node; all other channels: Standard node.
u8 nodes[] = { 0x00, 0OxC0 };
void *x = S26_SchedOpen(0, 1);
S26_Sched2653_Set Modes(x, 2, nodes);
S26_SchedExecute(x, 1000, 0);

7.10.7 S26_Sched2653 SetOutputs()
Function: Schedules the programming of all SSR output drivers on amodel 2653 |OM.

Prototype: u32 S26_Sched2653_Set Qut put s(XACT x, | OMPORT lonPort, u8 *states);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

I omPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

states u8 * Pointer to a 2-byte application buffer that contains the desired states of the SSR output

drivers. Thefirst byte corresponds to channels O (Isb) to 7 (msb), and the second byte
to channels 8 (Ish) to 15 (msh). Logic one indicates the associated channel isto be set
to the active state; zero indicates the channel is to be set to the inactive state.

Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.
Benchmark: 0.9 ms.
Example: /'l Programall SSR driver states on the 2653 at MM nunber 0, |OM port 9.
u8 states[] = {0x12, Ox5A }; /1 The desired relay states.
void *x = S26_SchedOpen(0, 1);

S26_Sched2653_Set Qutputs(x, 9, states);
S26_SchedExecute(x, 1000, 0);

7.10.8 S26_Sched2653 SetPwmRatio()
Function: Schedules the programming of the PWM ratio for one SSR channel on amodel 2653 IOM.

Prototype: u32 S26_Sched2653_Set PmrRati o(XACT x, | OWORT lonPort, u8 chan, u8 OnTinme, u8 OfTine);

Parameter Type Description

X void * Transaction handle obtained from S26_SchedQpen() .

I omPor t u8 The IOM port number (on the MM) to which the target IOM is connected.

chan u8 The SSR channel number that isto be programmed. Legal valuesrange from0to 7.
OnTi e u8 PWM on time, expressed in 2 msec increments, to be programmed.

O f Ti me u8 PWM off time, expressed in 2 msec increments, to be programmed.

Sensoray 2600 Programming Guide Gateway Action Scheduling

Returns: Error code as described in section 5.5. Zero isreturned if the operation was successful.
Benchmark: 0.9 ms.

Example: /1 Set the PMMratio for SSR channel 5 on the 2653 at MM nunber 0, | OM port 2.
/'l PWMratio = on for 20 nsec, off for 30 nsec.
void *x = S26_SchedOpen(0, 1);
S26_Sched2653_Set PwmrRatio(x, 2, 5, 10, 15);
S26_SchedExecute(x, 1000, 0);

Sensoray 2600 Programming Guide Gateway Action Scheduling

Chapter 8: Comport Transaction Functions

8.1 Overview

This section describes the middleware functions that are used to configure and operate the MM’ s asynchronous serial
communication ports. All of the programming examples reference constants that are defined in the header file App2600. h.
8.1.1 Return Values

All comport functions return a u32 value consisting of a three-byte error code and a status byte. The comport error types are a
subset of the transaction error types described in section 5.5. The error code occupies the most significant three bytes of the
returned value, and the status byte residesin the least significant byte. Zero isreturned for the error typeif the comport transaction
was successful. The returned status byte, which isvalid only if the error code is zero, contains a set of active-high bit flags:

Bit Description

COM_REJECTED A comport command was rejected by the MM. This flag has various meanings, depending on the
command that was executed. Thisisautomatically reset at the beginning of each command.

COM | SOPEN The comport isopen (i.e., transmit and receive operations are enabled). Thisisset by S26_ConOpen()
and reset by S26_ConCl ose() .

COM_FRAM NGERROR The UART detected aframing error on areceived character. This may be reset by calling
S26_Con(Cl ear Fl ags() or S26_Con¥l ush() .

COM_PARI TYERROR The UART detected a parity error on areceived character. This may be reset by calling
S26_ConCl ear Fl ags() or S26_Con¥l ush() .

COM_OVERFLOWERROR Thisindicates one of two conditions:

1. The UART receiver overflowed. Thismay bereset by calling S26_ConCl ear Fl ags() or
S26_ConFl ush() .

2. Thereceiver'sring buffer overflowed, or the UART receiver overflowed. To avoid thiserror, be sure
to remove received data from the receiver buffer before it becomes full. This may be reset by calling
S26_Con(Cl ear Fl ags() or S26_Con¥l ush() .

All comport status flags are passed through to the application exactly as they are received in the MM’ s response packet.

8.2 Configuration

8.2.1 S26 ComSetMode()

Function: Sets the operating mode for a comport.

Sensoray 2600 Programming Guide Comport Transaction Functions

Prototype: u32 S26_Contet Mode(u32 hbd, u8 dev, ul6é cdi v, u8 node, u8 | eds, u32 nsec,u32 retries);

Parameter Type Description
hbd u32 MM handle.
dev u8 Logical device identifier for the target comport. Specify avalue from 1to 4 to

address comport 1 to 4, respectively.

cdiv ulé Clock divisor for the baud rate generator. May be set to any value between
SI O BR_300 and S| O BR_115200.

node u8 Collection of enumerated values that set various operating attributes. The byte value
isformed by logically or’ing one value from each of the following groups:

Parity: SI O PARI TY_QDD, SI O PARI TY_EVEN, or SI O PARI TY_NONE.
Databits. from SI O_DATABI TS 5 to S| O _DATABI TS_8.

Stopbits SI O STOPBI TS_1 or SI O STOPBI TS_2.

Flow control: SI O FLOACTRL_OFF or SI O FLOACTRL_ON.

Interfacetype: SI O PHY_RS232, S| O PHY_RS422_| DLEON,
SI O _PHY_RS485 or S| O PHY RS422_| DLECFF.

| eds u8 Specifies the events that will cause the comport status LED to light. May be any
combination of the following: SI O LED TRANSM T, SI O LED RECEI VE,
SI O_LED_ERROR. Thebytevalueisformed by logically or'ing the desired events.

nmsec u32 Maximum time, in milliseconds, to wait for the MM to respond.
retries u32 Maximum number of transaction retry attempts.
cdi v may be set to any of the following valuesin order to The node byte is shown below. Bold type indicates the

program standard baud rates. Bold type indicates the default default settings after a module reset.

setting after amodule reset. Setting cdi v to any value not Stop Bit Length (in bit tines)
shown in the table will result in a non-standard baud rate. o= 1bit
. 1 =1.5 bits (char size 5)
Baud Rate cdi v[0] 1 =2 bits (char sizes 6,7,8)
300 0x0300
600 0x0180 Physi cal Layer
00 = RS232
1200 0x00C0 01 = RS422, Tx al ways on
2400 0x0060 10 = RS4xx, hal f-dupl ex
4800 0x0030 11 = RS4xx, idle 3-state
9600 0x0018
19. 2K 0x000C PrY1 | PHY0 | FLOW| PAR1 | PARD | STCP| DaT1 | DATO|
38. 4K 0x0006 C] \]
57. 6K 0x0004 ||
115. 2K 0x0002 Parity Char Size
Fl ow Contr ol X0 = None 00 = 5 bits
01 = Gdd 01 = 6 bits
11 = Even | |10 = 7 bits
11 = 8 hits

Sensoray 2600 Programming Guide Comport Transaction Functions

Returns:

Notes:

Example:

Thel eds byte is shown to theright. After amodule reset, the RCV flag is set and all other flags are

When set to logic one, each bit will cause the comport’sstatus ~ 1€Set t0 zero.
LED to light for approximately 100 milliseconds in response 7 6 5 4 3 2 1 0
to the associated event. | 0 | 0 | 0 | 0 |x1vrr| RCV| ERR| 0 |

Any combination of these bits may be specified. For

example, the XMT and ROV bits may both be set, in which case XM causesthe LED to light when a character is transmitted.

the LEDwill light when characters are sent or received at the RCV causes the LED to light when a character is received.

comport. ERR causes the LED to light when areceiver break condition
is detected or when an error (framing, overrun or parity) is
detected.

Error/status value, as described in section 8.1.1.

Following a MM reset, S26_ConSet Mode() should be called to configure each comport that will be used. A
comport must be configured before opening it or attempting to send data to or receive data from its remote serial
device.

The target comport must be closed when S26_Confet Mode() iscalled. If the comport is open, the command will
be rejected and the status byte’s coM REJECTED flag will be set.

/1 Configure COML on MM nunber 0 for the follow ng operating node:

/1 9600 baud, no parity, 8 data, one stop, no flow control, |ight LED upon receive.
u32 errstat = S26_Conftset Mode(O,

LOGDEV_COML,

SI O_BR_9600,

SI O PHY_RS232 | SIO PARITY_NONE | SIO DATA 8 | SIO STOP_1 | SIO FLOW OFF,
S| O_LED_RECEI VE,
1000,
1);
if (errstat & GAERRVASK)
printf("COML error detected.\n");
else if (errstat & COM REJECTED)
printf("Error: cannot set node while COML is open.\n");
el se
printf("Successfully configured COML.\n");

8.2.2 S26_ ComSetBreakChar ()

Function:

Prototype:

Returns:

Notes:

Specifies the Break character for a comport.

u32 S26_Contet BreakChar (u32 hbd, u8 dev, u8 BreakChar, u32 nsec, u32 retries);

Parameter Type Description

hbd u32 MM handle.

dev u8 Logical device identifier for the target comport. Specify avalue from 1to 4 to
address comport 1 to 4, respectively.

Br eakChar u8 Specifies the character that is to be inserted into the receive buffer upon detection of
an incoming break condition. The default break character is 0x00 upon power-up or
reset of the MM.

nsec u32 Maximum time, in milliseconds, to wait for the MM to respond.

retries u32 Maximum number of transaction retry attempts.

Error/status value, as described in section 8.1.1.

Following a MM reset, S26_ConSet Br eakChar () may be called for each comport to specify the port’s break
character. The break character will be automatically inserted into the comport’ s receive buffer in the event a break

Sensoray 2600 Programming Guide m Comport Transaction Functions

Example:

condition is detected on the comport’ sreceiveline. The break character may be set to a“printable” character, such
as a carriage return character, to provide a“visual” indication that a break was detected.

Break conditions are sometimes employed as message delimiters. For example, a hand-held barcode scanner may
assert abreak when its trigger is squeezed, and again when the trigger isreleased. The resulting break characters
will then serve as delimiters for the barcode data.

The target comport may be either open or closed when this function is called.

/1 Configure COML on MM nunber O to use a carriage return as its break character.
u32 errstat = S26_Confet BreakChar(0, LOGDEV_COML, 13, 1000, 1);
if (errstat & GAERRVASK)
printf("COML error detected.\n");
el se
printf("Successfully set COML break char.\n");

8.2.3 S26_ComOpen()

Function:

Prototype:

Returns:

Notes:

Example:

Enable transmit and receive operations on a comport.

u32 S26_ComOpen(HWM hbd, u8 LogDev, u32 msec, u32 retries);

Parameter Type Description

hbd u32 MM handle.

LogDev u8 Logical device identifier for the target comport. Specify avalue from 1to 4 to
address comport 1 to 4, respectively.

nmsec u32 Maximum time, in milliseconds, to wait for the MM to respond.

retries u32 Maximum number of transaction retry attempts.

Error/status value, as described in section 8.1.1.

By default, all comports are closed after aMM reset. S26_ConOpen() must be called to enable each comport that
will beused. A comport must be enabled before attempting to send datato or receive datafrom theitsremote serial
device. Before calling S26_Conpen() , the application should call S26_ConSet Mode() to configure the comport.

The target comport must be closed when thisfunction iscalled. If the comport is already open when this command
isissued, the command will be rejected and the status byte’s coM REJECTED flag will be set.

The com | SOPEN flag will be asserted in the returned status byte if this function executes successfully.

/1 Open COML on MM number O.
u32 errstat = S26_Contpen(0, 1, 1000, 1);
if (errstat & GAERRVASK)
printf("COML communi cati on problem detected.\n");
else if (errstat & COM REJECTED)
printf("COML al ready open.\n");
el se
printf("COML is %.\n", (status & COM | SOPEN) ? "open" : "closed");

8.24 S26 ComClose()

Function:

Disable transmit and receive operations on a comport.

Sensoray 2600 Programming Guide Comport Transaction Functions

Prototype:

Returns:

Notes:

Example:

u32 S26_ConCl ose(HW hbd, u8 LogDev, u32 nsec, u32 retries);

Parameter Type Description

hbd u32 MM handle.

LogDev u8 Logical device identifier for the target comport. Specify avalue from 1to 4 to
address comport 1 to 4, respectively.

nmsec u32 Maximum time, in milliseconds, to wait for the MM to respond.

retries u32 Maximum number of transaction retry attempts.

Error/status value, as described in section 8.1.1.

Thisfunction flushes the target comport’ s serial transmitter and receiver queues. Any character transmission that is
in progress is completed.

The target comport must be open when this function is called. If the comport is closed when this command is
issued, the command will be rejected and the status byte’s coM REJECTED flag will be set.

The com | SOPEN flag will be negated in the returned status byte if this function executes successfully.

/1 Close COML on MM nunmber O and flush all transnmit and receive buffers.
u32 errstat = S26_ConCl ose(0, 1, 1000, 1);
if (errstat & (GAERRVASK | COM REJECTED))
printf("COML communi cati on problem detected.\n");
else if (errstat & COM REJECTED)
printf("COML al ready closed.\n");
el se
printf("COML is %.\n", (status & COM | SOPEN) ? "open" : "closed");

8.3 Communication

8.3.1 S26_ComSend()

Function:

Prototype:

Returns:

Notes:

Sends data bytes to a comport.

u32 S26_ContSend(u32 hbd, u8 LogDev, char *MsgBuf, ul6 MsgLen, u32 nmsec, u32 retries);

Parameter Type Description

hbd u32 MM handle.

LogDev u8 Logical device identifier for the target comport. Specify avalue from 1to 4 to
address comport 1 to 4, respectively.

Ms gBuf char* Address of abuffer that contains the data bytes to be sent to the target comport.

MsgLen ulé Number of bytesin MsgBuf [] that areto be sent to the target comport.

nmsec u32 Maximum time, in milliseconds, to wait for the MM to respond.

retries u32 Maximum number of transaction retry attempts.

Error/status value, as described in section 8.1.1.

This function transfers data bytes to the target comport’ s transmitter queue. The comport transmitter queueisa
FIFO queue, so any bytes that are already pending in the queue will be transmitted before the new bytes are
transmitted.

If the transmitter queue would overflow as aresult of adding the new data bytestoit, al of the data bytesin the
comport command packet will be discarded and the status byte’'s com REJECTED flag will be set.

The target comport must be open when this functionis called. If the comport is closed, the command will be
rejected and the status byte's coM REJECTED flag will be set.

Sensoray 2600 Programming Guide m Comport Transaction Functions

Example:

Example:

/1 Send an ASCI| string to COML on MM nunber 0. Note that the nmessage size
/'l is reduced by 1 because we don't want to transmt the null stored at the
/'l end of the string.
char Msg[] = "This is a test.";
u32 errstat = S26_ConSend(0, 1, Msg, sizeof(Msg) - 1, 1000, 1);
if (errstat & GAERRVASK)
printf("COML error detected.\n");
else if (errstat & COM REJECTED)
printf("insufficient COML buffer space.\n");
el se
printf("Sent string to COML.\n");

/1 Send a binary string to COML on MM nunber O.
char Msg[] ={ 1, 2, 3, 4, 5 };
u32 errstat = S26_ConSend(0, 1, Msg, sizeof(Msg), 1000, 1);
if (errstat & GAERRVASK)
printf("COML error detected.\n");
else if (errstat & COM REJECTED)
printf("insufficient COML buffer space.\n");
el se
printf("Sent string to COML.\n");

8.3.2 S26_ComReceive()

Function:

Prototype:

Returns:

Notes:

Example:

Returns data bytes from a comport’s serial receiver queue.

u32 S26_ConRecei ve(u32 hbd, u8 LogDev, char *MsgBuf, ul6é *MsgLen, u32 nmsec,u32 retries);

Parameter Type Description

hbd u32 MM handle.

LogDev u8 Logical device identifier for the target comport. Specify avalue from 1to 4 to
address comport 1 to 4, respectively.

Ms gBuf char* Address of abuffer that is to receive the data bytes from the target comport.

MsgLen ulé* Address of a16-bit application buffer that contains a byte count. Before calling this

function, set the byte count to the maximum number of bytes that are to be
transferred from the comport into MsgBuf [] . The function will transfer this
number of bytes, or al of the unread bytesin the serial receiver queue, whichever is
less. When the function returns, the byte count will be set to the number of bytes
that were transferred into MsgBuf [] .

nsec u32 Maximum time, in milliseconds, to wait for the MM to respond.

retries u32 Maximum number of transaction retry attempts.

Error/status value, as described in section 8.1.1.

Thisfunction transfers bytes from the comport’ s serial receiver queueintoMsgBuf []. If no bytesare present in the
queue, the byte count value at * MsgLen will be set to zero, otherwise the number of bytes that were transferred into
MsgBuf [] will beindicated by * MsgLen.

The target comport must be open when this functionis called. If the comport is closed, the command will be
rejected and the status byte's coM REJECTED flag will be set.

/1 Fetch and display an ASCI| string from COML on MM number O.
char RcvBuf[256]; /1 Buffer that will receive the string.
ul6é BuflLen = sizeof (RcvBuf); /1 Max nunmber of characters to receive.
u32 errstat = S26_ConReceive(0, 1, RcvBuf, &BuflLen, 1000, 1);
if (errstat & GAERRVASK)

printf("COML error detected.\n");
el se

{

Sensoray 2600 Programming Guide m Comport Transaction Functions

RcvBuf [Buf Len] = 0; /1 Append null to end of string.
printf("%\n", RcvBuf); /1 Display the string.
}

8.3.3 S26_ComGetRxCount()

Function:

Prototype:

Returns:

Notes:

Example:

Returns a comport’s receive buffer character count.

u32 S26_Conmcet RxCount (u32 hbd, u8 LogDev, ul6 *CharCount, u32 nsec, u32 retries);

Parameter Type Description

hbd u32 MM handle.

LogDev u8 Logical device identifier for the target comport. Specify avalue from 1to 4 to
address comport 1 to 4, respectively.

Char Count ulé Address of a 16-bit application buffer that will receive the character count.

nmsec u32 Maximum time, in milliseconds, to wait for the MM to respond.

retries u32 Maximum number of transaction retry attempts.

Error/status value, as described in section 8.1.1.

S26_ConGet RxCount () returns the number of pending received characters (i.e., receive characters that have not
yet been retrieved by an Ethernet client) remaining in a comport’ s receive ring buffer.

/1 Determ ne the nunber of characters pending in MM nunber 0, COML receive buffer.
ulé RxCount;
u32 errstat = S26_Conteet RxCount(0, 1, &RxCount, 1000, 1);
if (errstat & GAERRVASK)
printf("COML error detected.\n");
else if (errstat & COM REJECTED)
printf("COML is not open.\n");
el se
printf("There are % characters in the Rx buffer.\n", RxCount);

8.3.4 S26_ComGetTxCount()

Function:

Prototype:

Returns:

Notes:

Example:

Returns a comport’s transmit buffer character count.

u32 S26_Conmcet TxCount (u32 hbd, u8 LogDev, ul6 *CharCount, u32 nsec, u32 retries);

Parameter Type Description

hbd u32 MM handle.

LogDev u8 Logical device identifier for the target comport. Specify avalue from 1to 4 to
address comport 1 to 4, respectively.

Char Count ulé Address of a 16-bit application buffer that will receive the character count.

nmsec u32 Maximum time, in milliseconds, to wait for the MM to respond.

retries u32 Maximum number of transaction retry attempts.

Error/status value, as described in section 8.1.1.

S26_ConGet TxCount () returns the number of characters remaining in a comport’ s transmit ring buffer that have
not yet been transmitted onto the serial interface. This can be useful if you must determine whether all characters
have been sent to aremote serial device, or if you need to find out if thereis enough space in the transmit buffer for
new characters.

/'l Determ ne the nunmber of characters remaining in MM nunber 0, COML transnit buffer.
ulé TxCount;
u32 errstat = S26_Contet TxCount(0, 1, &TxCount, 1000, 1);

Sensoray 2600 Programming Guide Comport Transaction Functions

if (errstat & GAERRVASK)
printf("COML error detected.\n");
else if (errstat & COM REJECTED)
printf("COML is not open.\n");
el se
printf("There are % characters in the Tx buffer.\n", TxCount);

8.4 Control

8.4.1 S26 ComStartBreak()

Function:

Prototype:

Returns:

Notes:

Example:

Initiates a break transmission on a comport.

u32 S26_Contt art Break(u32 hbd, u8 LogDev, u32 nmsec, u32 retries);

Parameter Type Description

hbd u32 MM handle.

LogDev u8 Logical device identifier for the target comport. Specify avalue from 1to 4 to
address comport 1 to 4, respectively.

nsec u32 Maximum time, in milliseconds, to wait for the MM to respond.

retries u32 Maximum number of transaction retry attempts.

Error/status value, as described in section 8.1.1.

S26_Contt ar t Break() isused to initiate a break transmission on a comport. The break condition will continue
until S26_ConEndBr eak() iscalled or the MM isreset.

The target comport must be open when thisfunctioniscalled. 1f the comport isaready closed when this command
isissued, the command will be rejected and the status byte’s coM REJECTED flag will be set.

See the example in section 8.4.2.

8.4.2 S26_ComEndBreak()

Function:

Prototype:

Returns:

Notes:

Example:

Terminates a break transmission on a comport.

u32 S26_ConEndBreak(u32 hbd, u8 LogDev, u32 nsec, u32 retries);

Parameter Type Description

hbd u32 MM handle.

LogDev u8 Logical device identifier for the target comport. Specify avalue from 1to 4 to
address comport 1 to 4, respectively.

nsec u32 Maximum time, in milliseconds, to wait for the MM to respond.

retries u32 Maximum number of transaction retry attempts.

Error/status value, as described in section 8.1.1.

S26_ConEndBr eak() isused to terminate a break transmission that was started by calling the
S26_Contt ar t Break() function.

The target comport must be open when thisfunctioniscalled. If the comport isaready closed when this command
isissued, the command will be rejected and the status byte’s coM REJECTED flag will be set.

/'l For a duration of 250 milliseconds, transnit a break on MM nunber 0, COML..
/1 Error detection is omtted here for clarity.

S26_Confst art Break(0, 1, 1000, 1);

Sl eep(250);

S26_ConEndBreak(0, 1, 1000, 1);

Sensoray 2600 Programming Guide Comport Transaction Functions

8.4.3 S26_ComClearFlags()

Function:

Prototype:

Returns:

Notes:

Example:

Resets all error flags belonging to a comport.

u32 S26_ConC ear Fl ags(u32 hbd, u8 LogDev, u32 nmsec, u32 retries);

Parameter Type Description

hbd u32 MM handle.

LogDev u8 Logical device identifier for the target comport. Specify avalue from 1to 4 to
address comport 1 to 4, respectively.

nmsec u32 Maximum time, in milliseconds, to wait for the MM to respond.

retries u32 Maximum number of transaction retry attempts.

Error/status value, as described in section 8.1.1.

If this function executes successfully, the COM FRAM NGERROR, COM_PARI TYERROR and COM OVERFLOWERROR
flags will be reset to zero on the target comport. Thiswill be reflected in the returned status byte as well.

/1l Reset all COML error flags on MM number O.
/1l For clarity, error detection is not shown here.
S26_Contl ear Fl ags(0, 1, 1000, 1);

8.4.4 S26_ComFlush()

Function:

Prototype:

Returns:

Notes:

Example:

Flushes a comport’ s receiver buffer and resetsits error flags.

u32 S26_ConFl ush(u32 hbd, u8 LogDev, u32 nsec, u32 retries);

Parameter Type Description

hbd u32 MM handle.

LogDev u8 Logical device identifier for the target comport. Specify avalue from 1to 4 to
address comport 1 to 4, respectively.

nmsec u32 Maximum time, in milliseconds, to wait for the MM to respond.

retries u32 Maximum number of transaction retry attempts.

Error/status value, as described in section 8.1.1.

S26_ConFl ush() may be used to “reset” the receiver buffer to compensate for a detected error on areceived
character from the remote serial device; this has the effect of resynchronizing the Ethernet client to the remote
serial device.

Thisfunction should be called, for example, if a parity, framing or overrun error is detected on areceived character.
When areceive error occurs, the entire contents of the receiver buffer must be considered corrupt and the receiver
buffer should accordingly be dumped in preparation for acommunication retry to the remote serial device.

The target comport must be open when thisfunctioniscalled. 1f the comport isalready closed when this command
isissued, the command will be rejected and the status byte’s coM REJECTED flag will be set.

/1 Fetch and display an ASCI| string from COML on MM number O.

char RcvBuf[256]; /1 Buffer that will receive the string.
ul6é BuflLen = sizeof (RcvBuf); /1 Max nunmber of characters to receive.

u32 errstat = S26_ConReceive(0, 1, RcvBuf, &BuflLen, 1000, 1);
if (errstat & GAERRVASK)
printf("COML error detected.\n");
else if (errstat & (COM PARI TYERROR | COM OVERFLOAERROR | COM FRAM NGERROR))

{

Sensoray 2600 Programming Guide Comport Transaction Functions

/'l Received a bad character, so we nust flush the receive buffer.
printf("Character receive error.\n");
S26_Confl ush(0, 1, 1000, 1);

}

el se

{
/1 Al is OK so process the received string.
RcvBuf [Buf Len] = 0; /1 Append null to end of character string.
printf("%\n", RcvBuf); /1 Display the string.

}

Sensoray 2600 Programming Guide Comport Transaction Functions

