M odel 626 Driver
for Windows

September 12, 2002

]
SEMNsSORAY

Sensoray Co., Inc.
7313 SW Tech Center Dr., Tigard, Oregon 97223
voice: 503.684.8005, fax: 503.684.8164, e-mail: sales@sensoray.com
WWW.Sensoray.com

Table of Contents

I ntroduction

Scope....1

Description....1
Block Diagram. ... 1

| nstallation

Executable Software Components. ... 2

Installation Procedure. ... 2
Windows 98/2000/ME/XP....2
WindowsNT4....3

SDK Components....3
Application SDK Components. . .. 3
Driver SDK Components. ... 3

Fundamentals of Usage

Board Addressing....5
Board Handles. ... 5
Physical Addressing....5

Thread-Safety5

Channel Numbering....6

Programming Examples. ... 6
DataTypes....6

Required FunctionCalls....7

DLL Linking/Unlinking7
Board Initialization 7

DLL Functions

Registration and Status Functions. ... 8
S626_OpenBoard() 8
S626_CloseBoard() 10
S626_GetErrors() 11

S626_GetAddress() 12

Register Access Functions. .. .12

S626_RegRead() 13
S626_RegWrite() 13

Analog I nput Functions. . .. 14

S626_ResetADC() 14

S626_StartADC() 15

S626_WaitDoneADC()15

S626_ReadADC() 15

A/D Programming Examples. ... 16
Example: Scattered Acquisition. ... 16
Example: Oversampling.... 16

Analog Output Functions. ... 17

S626_WriteDAC() 17

Digital 1/0 (DIO) Functions. . .. 18

DIO Channel Groups. .. . 18

DIO Signal Polarity 18
S626_DIOModeSet() 18
S626_DIOModeGet() 19
S626_DIOWriteBankSet() 20
S626_DIOWriteBankGet() 20
S626_DIOReadBank()21
S626 DIOEdgeSet() 22
S626_DIOEdgeGet() 22
S626_DIOCapEnableSet() 23
S626_DIOCapEnableGet() 24
S626_DIOCapStatus() 24
S626_DIOCapReset() 25
S626_DIOIntEnableSet() 26
S626_DIOIntEnableGet() 26

Sensoray Instruction Manual

Model 626 Driver for Windows

Table of Contents

Counter Functions. .. .27 Counter Programming Examples. ... 38
Counter Operating Modes. . .. 27 Constants Used in Examples. . .. 38
Input Signal Names. . . . 27 Example: Periodic Interrupt Generator 39
Using DIOs as Counter Outputs.. . . . 27 Example: Encoder Interface. . .. 40
Mode Descriptions.. . . . 27 Example: Simple Event Counter 40
Configuration Options. 28 Example: Pulse Width Measurement 41
IntSrc..... 28 Example: Frequency Counter 42
LatchSre...... 29 Watchdog Timer Functions. ... 44
LoadSrc....29)
IndxSrc ... 30 S626_WatchdogPeriodSet() 44
IndxPol ... 30 S626_WatchdogPeriodGet() 44
clkSre . 30 S626_WatchdogEnableSet() 45
ClkPol 31 S626_WatchdogEnableGet() 45
ClkMult. .. .31 S626 WatchdogReset() 46
ClkEnab31 S626 WatchdogTimeout() 46
S626 CounterModeSet() 32 Battery Functions. . .. 47
S626_CounterModeGet() 32 S626_BackupEnableSet() 47
S626_CounterEnableSet() 33 S626_BackupEnableGet() 47
S626_CounterPreload() 33 S626_ChargeEnableSet() 48
S626_CounterLoadTrigSet() 34 S626_ChargeEnableGet() 48

S626_CounterLatchSourceSet() 35
S626_CounterReadLatch() 35
S626_CounterCapStatus() 36
S626_CounterCapFlagsReset() 36
S626_CounterSoftindex() 37
S626_CounterIntSourceSet() 37

I nterrupt Functions. . .. 49
S626_InterruptEnable() 49
S626_InterruptStatus() 50

I nterrupt Programming Examples. ... 51
Example: DIO Interrupts. ... 51
Example: Counter Interrupts. .. .52

Sensoray Instruction Manual “ Model 626 Driver for Windows

Chapter 1. Introduction

1.1 Scope

This document discusses the contents and use of the distribution media supplied with Sensoray Model 626 boards. Primary
focusis given to the installation and use of the API provided by the Windows driver for Model 626 boards, which isincluded on
the distribution media. The driver works with the following Windows versions: 98, NT4, ME, 2000 and XP.

1.2 Description

The Model 626 driver is a set of executable software modules that will interface one or more Sensoray Model 626 boards to a
Windows application program of your design. Application programs may be developed in any popular Windows devel opment
environment, including Visual C++, Visual Basic, Delphi, etc.

Up to sixteen Sensoray Model 626 boards may be concurrently supported by the driver.

1.2.1 Block Diagram

The Model 626 driver consists of multiple software components that serve as an interface between the application program and
the operating system. Figure 1 illustrates the hierarchical functional relationship between these software components.

Figure 1: Block diagram of the software hierarchy.

Application

.

626 DRI VER i

S626. DLL

!

KERNEL- MODE | NTERFACE
A

’

COPERATI NG SYSTEM
A

v

HARDWARE
ACCESS

Sensoray Instruction Manual Model 626 Driver for Windows

Chapter 2. Installation

2.1 Executable Software Components

The driver’s executable software components must be correctly installed on the target system to ensure proper functioning of the
Model 626 driver.

2.1.1 Installation Procedure

2.1.1.1 Windows 98/2000/M E/XP
The components that are required, and their locations in your system, are shown in Table 1.

Table 1: Required driver components for Windows 98/2000/ME/XP.

Filename Directory Function
S626. DLL SYSTEM Model 626 API
SXDRV98. SYS SYSTEM32\ DRI VERS Kernel-mode driver

1. Removetheold driver. Perform the following steps only if you are installing the driver onto a computer that has an older
version of the driver. If you do not have an older version of the 626 driver, proceed to step 2.

a. Deleteall instances of W NDRVR. SYS and S626. DLL from your system.

b. Deletetheold INF file for the model 626. For Windows 98, the file will bein <WINROOT>\INFOTHER, with a
filename containing “626.” For Windows 2000, the file will be in <WINROOT>\INF, with the filename OEMx.INF
(where x is a number); you must examine each such INF file with atext editor to determine which one applies to the
model 626.

c. Runtheregistry editor: use RegEdt 32. exe if you are running Windows 2000, or RegEdi t . exe if you are
running Windows 98. If you are running Windows 2000 and Windows prevents you from performing one of the
following registry changes, go to the Security menu and obtain authority to make the required registry key change.

d. Deletethe 626 board' sregistry key. This key has the following registry path:

(Windows 2000) HKEY L OCAL_MACHI NE| SYSTEM Cur r ent Cont r ol Set | Enuni PCl .
(Windows 98) HKEY _LOCAL_MACHI NE/ Enum PCI.
The key that is to be deleted begins as follows: VEN_1131&DEV_7146 ...

e. Deletethe old kernel-mode driver key. This key has the following registry path:

(Windows 2000) HKEY L OCAL_MACHI NE| SYSTEM Cur r ent Cont r ol Set | Ser vi ces| W nDr vr.
(Windows 98) HKEY _LOCAL_MACHI NE| SYSTEM Cur r ent Cont r ol Set | Servi ces| Cl ass| W nDr vr.
2. Install thedriver. Perform the following steps:

a. Locate all required software componentsin their appropriate directories as detailed in Section 2.1. Make surethereis
only one instance of SXDRV98. SYS in your file system; there should be no duplicates of thisfile in your file system.

b. Shut down the computer.

3. Install the hardware. Perform the following steps:

a With system power turned off, install the model 626 board(s) into the backplane.

b. Apply system power and reboot.

c. TheNew Hardware Detected dialog box will display. Instruct the system to “search for the best driver,” then specify
the path to the SX. | NF file that is included on the distribution media. The New Hardware Wizard should find the
file you specified and display its path in the dialog box. Instruct the Wizard to finish the installation.

d. Reboot the system.

Sensoray Instruction Manual Model 626 Driver for Windows

2.1.1.2 WindowsNT4
The components that are required, and their locations in your system, are shown in Table 2.

Table 2: Required driver components for Windows NT4.

Filename Directory Function
S626. DLL SYSTEM Model 626 API
SXDRVNT. SYS SYSTEM32\ DRI VERS Kernel-mode driver

1. Install thedriver. Perform the following steps:
a. Runthe SETUPNT. BAT batch file. Thiswill locate SXDRVNT. SYS inits required location (as shown above) and
modify the Windows registry accordingly.
b. Copy S626. DLL totherequired target directory.
c. Shut down the computer.
2. Install the hardware. Perform the following steps:
a. With system power turned off, install the model 626 board(s) into the backplane.
b. Apply system power and reboot.

2.2 SDK Components

2.2.1 Application SDK Components

The Model 626 distribution media includes several source-code modules that are designed to help you to accelerate the
development of application programs that employ Model 626 boards:

W N626. C Functions used for dynamically linking to and unlinking from S626. DLL. Compile this module and link
the resulting object file to all Windows-based C/C++ applications that access functionsin S626. DLL.

W N626. H Declarations for resources supplied by W N626. C. Include thisfilein all Windows-based C/C++
application modules that access S626. DLL functions.

APP626. H Essential data types and manifest constants required by 626-based applications. Include thisfilein all
C/C++ application modules that access 626 boards.

W N626. BAS Datatypes, constants, and function declarations required for Visual Basic applications. Include thisfilein
any Visual Basic project that accesses functionsin S626. DLL.

2.2.2 Driver SDK Components

Besides providing modules for Windows-based application program development, the distribution media also includes several
platform-independent source-code modules that target custom driver development. Although the usage of these modulesis
beyond the scope of this document, they are briefly discussed here for the benefit of driver developers. Note: Sensoray does not
provide technical support for custom driver developers who are using these source code modules.

CLS626. CPP Abstract C++ class, named Cl s626, that serves as afoundation for developing a custom Model 626 driver
for any platform.

CLS626. H Header file for the Cl s626 class. Include thisfilein all C/C++ modules that reference the abstract class
implemented in CLS626. CPP.

Sensoray Instruction Manual Model 626 Driver for Windows

The Cl s626 class, declared in CLS626. Hand implemented in CLS626. C, isintended to be the base classin asimple
inheritance hierarchy. Cl s626 implements all board-specific, OS-independent functions for any driver. Cl s626 encapsulates
all knowledge of Model 626 hardware and the machinations required to manipul ate that hardware, but makes no assumptions
about the OS platform upon which the board is operating.

At a minimum, two software components must be designed and implemented by the driver devel oper:

= A derived, OS-dependent interface class. This derived class, which is based upon Cl s626, must supply Cl s626 with all
OS-dependent hardware access and system interface functions that are declared as pure virtualsin the Cl s626 base class.
This interface class implements such functions as dynamic memory allocation, kernel-mode interrupt processing and PCI
BIOS interfacing.

& A driver Application Program Interface (APl). This API, which is the software link between the application program and
the driver, must create objects of the derived class type and expose the underlying public Cl s626 base class and derived
class functions to application programs.

Sensoray Instruction Manual Model 626 Driver for Windows

Chapter 3: Fundamentals of Usage

3.1 Board Addressing

3.1.1 Board Handles

Each board is assigned a board number, which is referenced in this document as a“handle.” A handleisthe logical address of a
board. Most driver functions include the board handle as a parameter so that driver calls will be directed to a specific board.
Since the driver supports up to sixteen Model 626 boards, valid handles may have any numerical value in the range 0 to 15.

Board handles are not OS-allocated handles in the traditional Windows sense, but rather are integer values that are assigned by
the application program. When aboard is first declared to the driver by the application program, any valid, unused handle may
be specified for that board. Once a handle has been assigned to a board, it must not be used by any other board.

3.1.2 Physical Addressing

In addition to the board handle, which is the “logical” address for a board, each board also has a physical address. A board’s
physical address is always specified as a 32-bit, unsigned integer value. The physical addressis acomposite value that indicates
both the PCI slot number and PCI bus number that the board resides in. The high word (16 bits) of the address value represents
the bus number and the low word represents the slot number within that bus. For example, the physical address value
0x0002000A indicates that the board is located in bus number 2, slot 10.

It is not always necessary to know the physical address of aboard. A system containing asingle Model 626 board, for example,
has no need to know the location of the board; it istruly “ plug and play.” If two or more Model 626 boards are present in a

system, however, it is essential that some means be provided to distinguish between the boards; that means is the physical
address.

Note: PCI slot and bus numbers referenced by S626. DLL are generated by the PCI BIOS and consequently may differ from the
assigned ordinal slot and bus numbers.

Two of the driver functions make use of physical board addresses:

= S626_0OpenBoar d() declares aboard to the driver in order to establish a connection to the board.
& S626_Get Addr ess() returnsthe physical address of a connected board.

3.2 Thread-Safety

All driver functions are inherently thread-safe for multi-threaded, single-process applications. Although the driver is thread-
safe, it does not allow multiple concurrent access to driver functions on asingle board. The driver enforces thisrestriction. In
other words, in multithreaded applications, although any thread can call any driver function at any time, the driver may block
another thread from accessing the same board until the original thread leaves the driver.

The driver does not block if two threads concurrently access two different boards. However, if two threads concurrently access a
single board, there is potential for blocking.

To guarantee thread-safe behavior in multi-process applications, two processes must never share access, concurrent or otherwise,
to asingle Model 626 board. The application is responsible for enforcing this restriction.

Sensoray Instruction Manual Model 626 Driver for Windows

3.3 Channel Numbering

Many of the 1/0 resource classes provided by the Model 626 board have multiple instances of 1/0 circuitry which are referred to
as channels. For example, the board has four analog output channels and 48 digital 1/0 channels.

Each DLL function that accesses a specific channel requires a channel number argument to designate the channel to be affected
by the function. By convention, channel humbers always begin at zero and extend upward to the maximum valid channel
number belonging to the addressed board:

& Digital 1/0 channel numbers range from 0 to 47.

Analog Input channel numbers range from O to 15.

't
& Anaog Output channel humbers range from 0 to 3.
't

Counter channel numbers range from 0 to 5, as shown in Table 3.

Table 3: Counter channel numbering assignments.

Channel Number

0 1 2 3 4 5

Addressed Counter

0A 1A 2A 0B 1B 2B

3.4 Programming Examples

The C++ programming language has been used to code all programming examples. In most cases, programming examples can
be easily adapted to other programming languages.

3.4.1 DataTypes

All data values that are passed to or returned from DLL functions belong to a small set of datatypes. The data types employed
by the API arelisted in Table 4. Datatypes are referenced by their type names as shown in the left column of the table.

Table 4: Data typesused by DLL functions

Type Name Description
BYTE 8-bit, unsigned integer
WORD 16-bit, unsigned integer
SHORT 16-bit, signed integer
COUNTER_SETUP 16-bit, unsigned integer. See Section 4.6.2 for details.
DWORD 32-bit, unsigned integer
HBD 32-bit, unsigned integer
LONG 32-bit, signed integer
DOUBLE 8-byte, double-precision floating point value.
FPTR_I SR Address of afunction that takes no arguments and returns no value.

Sensoray Instruction Manual n

Model 626 Driver for Windows

3.5 Required Function Calls

3.5.1 DLL Linking/Unlinking

Any application that accesses functionsin S626. DLL must dynamically link to the DLL before calls are made to any of the
DLL functions. Such applications must also unlink from the DLL when the application is terminated so that resources used by
the DLL will bereleased. The means by which DLL linking and unlinking is implemented depends on your development
environment.

If you are developing an application using C/C++, your application must call S626_DLLOpen() to dynamically link to the
DLL before calling any DLL functions, and S626_DLLCl ose() to unlink from the DLL when the application terminates.
These two functions are provided for C/C++ developersinthe W N626. C module on the distribution media. If you are using a
language other that C/C++ that does not perform automatic DLL linking, you must provide functions equivalent to
S626_DLLOpen() and S626_DLLCl ose() inyour source language format.

Applications developed in Visual Basic do not require callsto equivalent S626_DLLOpen() or S626_DLLCl ose()
functions because VB automatically links to a DLL when any DLL function isfirst called, and automatically unlinks from a
previously linked DLL when the application terminates.

3.5.2 Board Initialization
Some DLL functions are used universally in all applications, while others, depending on application requirements, may or may
not be used. All application programs must, as a minimum, perform the following steps for each Model 626 board:

1. Call S626_0OpenBoar d() to enable communication with the Model 626 board.
2. Call S626_GCet Error s() toverify that the board is properly initialized, fault-free and ready to communicate.

Sensoray Instruction Manual Model 626 Driver for Windows

Chapter 4: DLL Functions

4.1 Registration and Status Functions

4.1.1 S626 OpenBoard()

Function:

Prototype:

Returns:

Notes:

Registers aModel 626 board with the driver.

VO D S626_0OpenBoard(HBD hbd, DWORD address, FPTR call back, DWORD priority);

Parameter Type Description

hbd HBD Board handle. Use any value between 0 and 15, inclusive, but do not use a value that
has already been used for another Model 626 board.

addr ess DWORD Composite physical address (as described in section 3.1.2) of the Model 626 board.

The high 16-bit word contains the PCI bus number and the low word contains the
PCI slot number.

Set to zero to force the driver to detect and register any Model 626 board. Y ou may
then determine the address of the board by calling S626__Get Addr ess() .

cal | back FPTR_I SR Address of the application’s interrupt callback function (see Section 4.10.1 for a
discussion of interrupt callback functions). Set to zero if interrupts will not be used.

priority DWORD Priority level of the interrupt handler thread. See below for details.

Thepri ority argument may be set to one of the following values:

Value Priority level

-2 THREAD_PRI ORI TY_LOWEST
-1 THREAD_PRI ORI TY_BELOW NORMAL
0 THREAD_PRI ORI TY_NORMAL. Specify thisvalue if interrupts will not be used.
1 THREAD_PRI ORI TY_ABOVE_NORMAL
2 THREAD_PRI ORI TY_HI GHEST
3 THREAD_PRI ORI TY_TI ME_CRI TI CAL

None.

This function registers aModel 626 board so that communication between the application program and board
hardware will be enabled. Each board must be registered by this function before calling any other DLL functions
that reference that board.

After registering aboard, you may re-register the board by calling S626_OpenBoar d() with the same board
handle. This has the effect of calling S626_Cl oseBoar d() to unregister the board (see Section 4.1.2), and
then calling S626__OpenBoar d() to register and reset the board. This feature can be used to automate recovery
from soft failures that may have set “unrecoverable” error flags on aboard.

Do not register two different boards (with two different handles) at the same physical address. Thiswill result in
unpredictable behavior and may cause your system to become unstable.

When you specify an address value equal to zero, the driver will seek and register the first Model 626 board in your
system. Thisfeature is useful in either of two cases:

1. Youhaveonly one Model 626 board in your system, therefore the application does not need to know the

Sensoray Instruction Manual n Model 626 Driver for Windows

board's physical location in the system. In this case, your application can simply specify zero for the
addr ess value.

2. You have two or more Model 626 boards in your system and you are unsure of the physical address values to
specify in your application program. In this case, you may insert aModel 626 board into one of the PCI slots
inwhich it will be residing when you execute your application, then call S626__CpenBoar d() with
addr ess set to zero, followed by acall to S626_Get Addr ess() to determine the physical location of the
board. The single Model 626 board is then moved to the slot in which the next Model 626 board will reside,
and this process is repeated to learn the next physical address, etc. Once all of the physical addresses are
known, they are “hardwired” into your application program and all of the target slots may be populated.

S626_OpenBoar d() configuresall board I/O resources asif a PCl bus hardware reset had occurred. The bullet
items below detail the board configuration resulting from execution of this function. The last two items, battery
backup and counter subsystems, are left unmodified in order to support battery backup of the counters during
system power failure.

& The board’ s master interrupt is masked (disabled).

The watchdog timer is disabled and the timer interval is set to 0.125 seconds.

All digital 1/0 (DIO) outputs are programmed to the inactive state.

Edge capturing is disabled on all DIO channels.

Interrupts are disabled on al DIO channels.

All DIO event capture edge polarities are set to zero (rising edges selected).

DIO channel 0-5 are configured to operate as standard DIOs (vs. counter overflow outputs).
All analog output channels are programmed to zero volts out.

No ADC pall listisin effect; S626_Reset ADC() must be called before S626_ReadADC() .
Battery charging is disabled.

Battery backup is unmodified.

R R & & & & & B &R R

Y

Counter cores, status and control registers are unmodified, except that all counter interrupts are disabled.
Example: FEEELEEEEErr i r i bbb rrrrrrrnd
/'l Decl are board nunber 0, address unknown, no interrupts.
FEEELEEEEErr i r i b r i bbb rrrrrrrng
S626_OpenBoard(0, 0, 0, 0);

if (S626_GCetErrors(0))
{

}

/'l Handle error

Example: JEEELTILEEL i i bbb g
/'l Declare board nunber 2, which resides at bus 0, slot 11, no interrupts.
TIEEETTEEEL i bbb rrrrrrrrrrgg

#define BUS 0
#define SLOT 11

S626_OpenBoard(2, (BUS << 16) | SLOT, 0, 0);

if (S626_CetErrors(2))
{

}

/'l Handle error

Sensoray Instruction Manual n Model 626 Driver for Windows

Example:

FELELTIEELL i bbb rrrrrrrrrrgg
/'l Declare board nunber 3, which resides at bus 1, slot 10, with interrupts.

/'l IntFunc() is the application ISR callback function.

FILELTTEEEL i bbb rrrrrrrrrrgg

S626_OpenBoar d(3, 0x0001000A, |ntFunc, THREAD_PRI ORI TY_NORMAL):

if (S626_CetErrors(3))
{

}

/'l Handle error

4.1.2 S626 CloseBoard()

Function:

Prototype:

Returns:

Notes:

Example:

Unregisters aModel 626 board with the driver.

VO D S626_Cl oseBoard(HBD hbd);

Parameter Type Description
hbd HBD Board handle of the board to be unregistered.
None.

This function unregisters aModel 626 board that has been previously registered by S626_OpenBoar d() . When
called, this function will sever the driver’s communication link between the application program and board
hardware, and the board handle will be freed. Once freed, the board handle is available for assignment to the same
board or to any other Model 626 board.

Each Model 626 board that has been registered by S626__OpenBoar d() must be unregistered when its hardware
resources are no longer needed by an application. This can be accomplished by calling S626_Cl oseBoar d() .

S626_Cl oseBoar d() maodifies I/O resource states as follows:
= The board’s master interrupt is masked (disabled).
= The watchdog timer is disabled.
= Battery charging is disabled.

Except as listed above, S626_Cl oseBoar d() does not modify the states of board resources. If any board
resources (i.e., analog output voltages or digital outputs) are to be programmed to application-defined “ shutdown”
states, the application must call the appropriate driver functions to program these states before calling

S626_Cl oseBoar d() .

TIEELETLEEL i bbb rrrrrri
/'l Unregister board nunber 0 after progranmm ng anal og and digital outputs
/1 to their application-defined "shutdown" states.

FIEELLIIELL bbb rrrd

/1 Program all anal og outputs to zero volts.
for (WORD DacChan = 0; DacChan < 4; S626_WiteDAC(0, DacChan++, 0);

/1 Programall digital outputs to the inactive state.
for (WORD Group = 0; Goup < 3; S626_DI ONiteBankSet(0, G oup++, 0);

/'l Unregister the board and rel ease its handle.
S626_Cl oseBoard(0);

Sensoray Instruction Manual Model 626 Driver for Windows

4.1.3 S626 GetErrors()

Function:

Prototype:

Returns:

Notes:

Returns error flags and clears to zero all resettable error flags.

DWORD S626_Get Errors(HBD hbd);

Par ameter

Type

Description

hbd

HBD

Board handle.

DWORD consisting of zero or more active-high bit flags. Each bit flag is an indicator for a specific error condition

as designated by the following bit masks:

Bit Mask Symbolic Name Description

0x00000001 ERR_OPEN Failed to open the kernel-mode driver. Thisisusually caused by a
missing or unregistered software component. Make sure all required
driver software components are properly installed and registered and
no unnecessary driver components are installed or registered. See
Chapter 2 for details.

0x00000002 ERR_CARDREG Kernel-mode driver can't register the board. Thisis usually caused by
applications that fail to unlink from S626. DLL when terminating. If this
is not the case, the kernel-mode driver may be improperly installed or
registered. See Chapter 2 for details.

0x00000004 ERR_ALLOC_MEMORY Memory allocation error. Thisistypically caused by insufficient
system RAM.

0x00000008 ERR_LOCK_BUFFER DMA buffer lock failed.

0x00000010 ERR _THREAD System failed to launch the interrupt thread.

0x00000020 ERR_INTERRUPT Kernel-mode driver failed to enable interrupt.

0x00000040 ERR_LOST_IRQ Missed interrupt. Thisisthe result of interrupts that are occuring at
too high arate for the CPU to handle.

0x00000080 ERR_INIT Failed to instantiate board object. Thisistypically caused by
insufficient system RAM.

0x00000100 ERR_VERSION Incompatible version of kernel-mode driver. Upgrade to the latest
version of SXDRVR to resolve this problem.

0x00010000 ERR_ILLEGAL_PARM Illegal function argument value (i.e., invalid DAC or ADC channel
number was specified).

0x00020000 ERR_I2C Board EEPROM access fault during board initialization. If this
occurs, try unregistering the board and then re-registering it. If the
error persists, the problem is likely a hardware fault that requires
board repair.

0x00100000 ERR _DACTIMEOUT DAC communication time-out.

0x00200000 ERR_COUNTERSETUP Counter parameter isillegal in current counter operating mode.

0x00400000 ERR_DEBI_TIMEOUT Local bus access fault.

This function may be called at any time after the target board has been opened with S626_COpenBoar d() .

The symbolic names in the above error flag list are the names used to reference the bit mask values in the supplied
C language source code. The definitions for these symbolic names may be found in the APP626. Hsourcefile.

Error flags with mask values of 0x00010000 and higher are associated with recoverable errors and are
automatically reset to zero when S626_Get Err or s() executes. Error flags with mask values below

Sensoray Instruction Manual

Model 626 Driver for Windows

Example:

0x00010000 are associated with unrecoverable errors and can be cleared only by unregistering the board and
then re-registering it. See Section 4.1.1 for details.

Oncean error flag is set, it remains set until cleared by re-registering the board, or, in the case of recoverable errors,
S626_Get Errors() iscaled.

TEEEELTEEL e i rrrrrrn
/'l Fetch all error flags fromboard nunber 2 and reset recoverable error flags.
TEEEELTEEL i rrrrrr

DWORD faults = S626_GetErrors(2);

4.1.4 S626_GetAddress()

Function:

Prototype:

Returns:

Notes:

Example:

Returns the physical address of a Model 626 board.

DWORD S626_Get Address(HBD hbd);

Parameter Type Description
hbd HBD Board handle.

DWORD value consisting of the PCI bus humber in the high 16-bit word and PCI slot number in the low word.

This function serves primarily as a utility to help application devel opers determine the slot and bus numbering
conventions of a PCl system. In PCI systems that have multiple Model 626 boards, the ability to reference a
specific board is mandatory. For example, one board might control a heater while a second board controls a cooler.
For obvious reasons, the application must be able to distinguish between these boards, and the only way to do this
isto assign fixed physical addresses to each board.

TELEELTEEL e bbb rrrrrr
/1 Determ ne the physical addresses of a Mbdel 626 board. Wth no other

/'l NMbdel 626 boards installed in the system a single Mdel 626 board

/1l is inserted into the target PCl slot, then this code is executed to

/1l determ ne the slot’s physical address.

TEEEETTEEL bbb rrrrrr

/'l Declare board to driver; set address to zero to force the driver to |ocate
/1 a Model 626 board. Interrupts will not be used on this board.
S626_OpenBoard(0, 0, 0, 0);

/1 Handl e any errors.
if (S626_GCetErrors(0))

{
}

/1 Handle error
/'l Fetch conposite address fromdriver.
DWORD adrs = S626_Cet Address(0);

/1 Display PCl bus and sl ot nunbers.
printf("Bus no. = %, Slot no. = %\n", adrs >> 16, adrs & OXFFFF);

4.2 Register Access Functions

The register access functions may be used to directly read from or write to any register in the Model 626 board’s local address
space. These functions serve primarily as diagnostics since nearly al of the board’ s functional features can be manipulated from
other, higher-level functions provided by the DLL.

Sensoray Instruction Manual Model 626 Driver for Windows

421 S626 RegRead()

Function: Returns avalue from a Model 626 local bus hardware register.

Prototype: WORD S626_RegRead(HBD hbd, WORD regadrs);
Parameter Type Description
hbd HBD Board handle.

regadrs WORD Address of the target hardware register expressed as an offset
from the base address of the board’ s local register space.

Returns: WORD value consisting of the 16-bit value read from the target hardware register.

Notes: Use this function to read the contents of alocal bus hardware register on aModel 626 board.

Example: TEEEELLELL e bbb rrrrrr
/'l Read the states of digital inputs channels 0-15 from board nunber O.
TELEELTEEL e bbb rrrrrr

#defi ne REG_RDDI NA 0x0040 /1l Port address used to read DI O group O inputs.

/'l Capture a snapshot of the input states of digital |/O channels 0-15.
WORD | nput St ates = S626_RegRead(0, REG RDDI NA);

4.2.2 S626 RegWrite()

Function: Writesavalue into aModel 626 local bus hardware register.

Prototype: VO D S626_RegWite(HBD hbd, WORD regadrs, WORD val ue);
Parameter Type Description
hbd HBD Board handle.

regadrs WORD Address of the target hardware register expressed as an offset from
the base address of the board’ s local register space.

val ue WORD Data value to be written to the hardware register.

Returns: None.

Notes: Use this function to write a value into alocal bus hardware register on a Model 626 board.
Example: TEEEETLEELE bbb rrrrrrr
/1 Wite all zeros to the M SCl register on board nunber 2.
TEEEEELLEL i rrrrrr
#defi ne REG_M SC1 0x0088 /1 Port address of M SCl control register.

/1 Wite zeros to the M SC1 register.
S626_RegWite(2, REGMSCL, 0);

Sensoray Instruction Manual Model 626 Driver for Windows

4.3 Analog I nput Functions

43.1 S626 _ResetADC()

Function:

Prototype:

Returns:

Notes:

Example:

Initializes the anal og-to-digital converter in preparation for digitizing analog inputs.
VO D S626_Reset ADC(HBD hbd, BYTE *pollist);

Parameter Type Description
hbd HBD Board handle.
pol I'i st BYTE* Address of apall list.

None.

Before executing any A/D conversions, a*“ poll” list must be created. The poll list is aschedule of analog-to-digital
acquisitions that will transpire when S626_ReadADC() is called.

The poll list contains at least one and as many as sixteen acquisition items. Each item has two components: the
analog input channel number to be digitized and the gain to be applied during the measurement. The last itemin
thelist is marked with an End Of Poll List (EOPL) flag. When an A/D conversion is started, al items in the poll
list are digitized in the order in which they appear in the list. Channel ordering is purely arbitrary and is at the
discretion of the application programmer.

After populating or modifying the poll list, S626_Reset ADC() must be called to initialize the ADC and to pass to
it the poll list. When this has been done, S626_ReadADC() may be called to invoke the actual A/D conversions.
Callsto S626_ReadADC() may be repeated as desired so long as the poll list is not changed. If a new set of
channelsis required or any measurement ranges need to be changed, the poll list must be modified and
S626_Reset ADC() must be called again before the next call to S626_Read ADC() .

It is possible to digitize a channel more than once during a single scan by repeating the channel in the poll list. If an
analog input channel must be converted repeatedly (i.e., for oversampling), it may be faster to duplicate the channel
in the poll list; this strategy will return up to sixteen successive digitized values from the channel with asingle call
t0 S626_ReadADC() .

Each poll list item occupies one byte, as shown in Figure 2.

Figure2: Organization of a bytein an A/D poll list.
7 6 5 4 3 2 1 0

EOPL 0 0 GAIN CHANNEL NUMBER

= EOPL issetto 1 to mark the end of the pall list, or O to indicate more poll list items follow the current item.
& GAl Nsetsthe ADC full-scaleinput range: 0 selectsthe+10V range, 1 selectsthe +5V range.
= CHANNEL NUMBER specifies the analog input channel in the range 0 through 15.

See “A/D Programming Examples” on page 16.

Sensoray Instruction Manual Model 626 Driver for Windows

4.3.2 S626_StartADC()

Function:

Prototype:

Returns:

Notes:

Example:

Initiates digitization of all acquisition itemsinan ADC poll list.

VO D S626_Start ADC(HBD hbd);

Parameter Type Description
hbd HBD Board handle.
None.

This function initiates a sequence of A/D conversions, as specified by a pall list, and then immediately returns
without waiting for the sequence to run to completion. The conversion process will then run autonomously while
the application performs other tasks.

When called, this function launches an 1/O channel program that runs on a dedicated 1/0O processor residing on the
Model 626 board. The I/O processor runs independently of the system processor so that, regardless of what is
happening in the Windows environment, the time interval between the A/D acquisitions specified in the poll list
will be deterministic.

Before calling this function, S626_Reset ADC() must be called to convert the target poll list into an equivalent I/O
channel program. In addition, S626_Reset ADC() must be called again if the poll list is modified in any way.

See Section 4.3.5.

4.3.3 S626 WaitDoneADC()

Function:

Prototype:

Returns:

Notes:

Example:

Retrieves the digitized values resulting from a call to S626_St ar t ADC() .

VO D S626_Wai t DoneADC(HBD hbd, SHORT *dat abuf);

Parameter Type Description

hbd HBD Board handle.

dat abuf SHORT* Address of an array that will receive the digitized data.

None.

Before calling this function, S626_St ar t ADC() must be called to invoke the conversion process. This function
stores the resulting signed, digitized datavaluesinthedat abuf [] array. The calling thread will be blocked until
the conversion process has finished and digitized data has been transferred to dat abuf [] .

See Section 4.3.5.

4.3.4 S626_ReadADC()

Function:

Prototype:

Returns:

Digitizes all acquisitionitemsinan ADC poll list.
VO D S626_ReadADC(HBD hbd, SHORT *dat abuf);

Parameter Type Description
hbd HBD Board handle.
dat abuf SHORT* Address of an array that will receive the digitized data.

None.

Sensoray Instruction Manual Model 626 Driver for Windows

Notes: This function performs a sequence of A/D conversions, as specified by a poll list, and stores the signed, digitized
datavaluesinthedat abuf [] array. Itisthe equivalent of calling two other functions in sequence:
S626_St art ADC() and S626_\Wai t Done ADC() .

When called, this function launches an 1/O channel program that runs on a dedicated 1/0O processor residing on the
Model 626 board. The I/O processor runs independently of the system processor so that, regardless of what is
happening in the Windows environment, the time interval between the A/D acquisitions specified in the poll list
will be deterministic.

Before calling this function, S626_Reset ADC() must be called to convert the target poll list into an equivalent I/O
channel program. In addition, S626_Reset ADC() must be called again if the poll list is modified in any way.

Example: See Section 4.3.5.

4.3.5 A/D Programming Examples

4.35.1 Example: Scattered Acquisition

TEEEELLELL e bbb rrrrrr
/1 Digitize channels 2, 3 and 6 on board nunber O.
TEEEEETEEL e bbb rrrrrr

#defi ne RANGE_10V 0x00 /1 Range code for ADC 10V range.
#defi ne RANGE_5V 0x10 /1 Range code for ADC #5V range.
#defi ne EOPL 0x80 /1 ADC end-of-poll-list marker.
#defi ne CHANVASK OxOF /1 ADC channel nunber mask.

/1l Allocate data structures. W allocate enough space for maxi mum possible
/'l nunber of itens (16) even though this exanple only has 3 itens. Although
/1l this is not required, it is the recormended practice to prevent progranm ng

/1l errors if your application ever nodifies the nunber of itens in the poll list.
BYTE pol | _Iist[16]; /1 List of items to be digitized.

SHORT dat abuf [16]; /1 Buffer to receive digitized data.

/1 Popul ate the poll list.

poll list[0] = 2 | RANGE_10V; /1l Chan 2, £10V range.

poll _list[1l] = 3 | RANGE 5V; /1 Chan 3, £5V range.

poll list[2] = 6 | RANGE_10V | EOPL; /1 Chan 6, +10V range, mark as |ist end.

/'l Prepare for A/ D conversions by passing the poll list to the driver.
S626_Reset ADC(0, poll _list);

/1l Digitize all itenms in the poll list. As long as the poll list is not nodified,

/1 S626_ReadADC() can be called repeatedly w thout calling S626_Reset ADC() agai n.
/1 This could be inplemented as two calls: S626_Start ADC() and S626_\Wai t DoneADC() .
S626_ReadADC(0, databuf);

/1 Display all digitized binary data val ues.
for (int i =0; i <=2; i++)
printf("Channel % = %\n", poll _list[i] & CHANVASK, databuf[i]);

4.3.5.2 Example: Oversampling
TEEEEETEEL e bbb rrrrrr
/'l Average sixteen neasurenents from anal og i nput channel 2, board nunber O.
/'l Channel 2 will be digitized on the £10V input range.
TEEEEETELL bbb rrrrrrn
#defi ne EOPL 0x80 /1 ADC end-of-poll-Iist marker.

SHORT dat abuf [16] ; /1 Buffer to receive digitized data.

Sensoray Instruction Manual Model 626 Driver for Windows

/'l Create and populate a poll list to digitize channel 2 sixteen tinmes.

BYTE pol |l _list[] ={ 2,2,2,2, 2,2,2,2, 2,2,2,2, 2,2,2,2|EOPL };

/'l Prepare for A/ D conversions by passing the poll list to the driver.
S626_Reset ADC(0, poll _list);

// Digitize all itenms in the poll list. As long as the poll list is not nodified,

/1 S626_ReadADC() can be called repeatedly w thout calling S626_ Reset ADC() agai n.
S626_ReadADC(0, databuf);

/1 Conpute and display the average of the 16 neasured val ues.

LONG sum = 0;
WORD *pbuf = dat abuf;
for (int i =0; i < 16; sum+= (LONG (*pbuf++));

printf("Average A/D value = %\n", (WORD)(sum>> 4));

4.4 Analog Output Functions

4.4.1 S626 WriteDAC()

Function: Programs an anal og output setpoint on one DAC channel.

Prototype: VO D S626_W it eDAC(HBD hbd, WORD chan, LONG setpoint);

Parameter Type Description
hbd HBD Board handle.
chan WORD Channel number of the DAC that will be programmed to the new setpoint.

Valid channel nhumbers range from O through 3. Specifying a DAC
channel number greater than 3 will causethe ERR | LLEGAL_PARM
error flag to be set

set poi nt LONG New setpoint value. Vaues may range from -8191 to +8191.

Returns: None.

Notes: Setpoint values that exceed the valid value range will be limited to the legal range; values less than -8191 will be
forced to -8191, and values greater than +8191 will be forced to +8191.

Example: TEEEETTIELL i rrrrrr
/1 This function sets a DAC channel to the specified output voltage.
TEEEEETEEL i bbb rrrrrr
#def i ne DAC_VSCALAR 819.1 /'l Binary-to-volts scal ar for DAC

Set DacVol t age(HBD hbd, WORD channel, DOUBLE volts)

{

/1 Make adjustnments to prevent conversion errors.

if (volts > 10.0) volts = 10.0;

else if (volts <-10.0) volts = -10.0;

/'l Program new DAC set poi nt.

S626_WiteDAC(hbd, channel, (LONG (volts * DAC VSCALAR));
}

Sensoray Instruction Manual Model 626 Driver for Windows

4.5 Digital 1/0 (DIO) Functions

4.5.1 DIO Channel Groups

In many of the DIO functions, DIO channels are addressed and manipulated in sets of sixteen channels called groups. Model
626 has atotal of 48 DIO channels, numbered O through 47, which are affiliated with three 16-channel DIO groups, designated
as group numbers O through 2. Each channel is assigned afixed bit position within a 16-bit integer value that encapsulates the
group. The relationships between groups and channels are shown in Table 5.

Table 5: Relationships between DIO groups and channels.

DIO Group | DIO Channel Bit Assignments of DIO Channelsin Group Word
Number Range \g;; 15/git 14|Bit 13(Bit 12|Bit 11[Bit 10| Bit 9 | Bit 8 | Bit 7| Bit 6 | Bit 5| Bit 4 | Bit 3| Bit 2| Bit 1 | Bit 0
0 0 to 15 15|14 (13|12 |11 (10| 9 8 7 6 5 4 3 2 1 0
16 to 31 | 3130|2928 |27 |26 (25|24 |23 |22|21|20|19 |18 |17 |16
2 32 to 47 |47 |46 (45|44 |43 |42 |41 (40|39 (38|37 (3635|134 (33|32

For example, consider DIO channel group number 2. Any access to this group will be in the form of a sixteen-bit word whose
most significant bit corresponds to DIO channel 47 and least significant bit corresponds to DIO channel 32.

4.5.2 DIO Signal Polarity

Each DIO channel is electrically configured to function as an open-collector, active low, “wired-OR” circuit. This meansthat a
DIO channel is actively driven to zero voltswhenit isturned “on,” and is passively pulled up to +5 Voltswhen it is turned “ off.”
In the context of the logical state of a DIO channel, however, logic zero represents the “off” state and logic one represents the
“on” state.

Table 6: Equivalent representations of DIO signal states.

Generic Physical L ogical
Active (on) 0V, active driver 1
Inactive (off) +5V, passive driver 0

To avoid confusion, all references to DIO channel states are restricted to either the logical states, 1 and 0, or the equivalent
generic terms active and inactive.

453 $626_DIOM odeSet()

Function: Sets the operating mode of a dual-mode DIO channel.

Prototype: VO D S626_DI OvbdeSet (HBD hbd, WORD chan, WORD overflow);

Parameter Type Description
hbd HBD Board handle.
chan WORD DIO channel number, in the range 0 to 5, for which the operating modeis to be

programmed. Specifying anillegal channel number will cause the
ERR | LLEGAL_ _PARMerror flag to be set.

overflow WORD Indicates whether the specified DIO channel isto operate as a standard DIO
(zero) or as a counter overflow output (non-zero).

Sensoray Instruction Manual Model 626 Driver for Windows

Returns: None.

Notes: Each of DIO channels 0 through 5 can independently function as either aDIO or as a counter overflow output.
Table 7 shows the relationship between DIO channel humber and associated counter channel number. For
example, DIO channel 4 can behave either as a standard DIO or as the overflow output for counter 2A (counter
channel number 2).

Table 7: Counter channels associated with dual-function DIO channels.

DIO Channel : 0 1 2 3 4 5

Counter Channel : OA |OB|1A | 1B |2A | 2B

When configured as a counter overflow output, a DIO will produce a single, 500 nanosecond wide output pulse
when the associated counter overflows.

Example: TELEELIEELL i bbb i rrrrrr
/1 Configure board 0, DI O channel 2 as overflow output for counter channel 1A.
PELEELTEELE i bbb rrrrrr

#define DI O STANDARD O
#define DI O OVERFLOW 1

S626_DI OVbdeSet (0, 2, DI O OVERFLOW);

45.4 S626_DIOM odeGet()

Function: Returns the operating mode of a dual-mode DIO channel.

Prototype: WORD 626_DI OvbdeGet (HBD hbd, WORD chan);

Parameter Type Description
hbd HBD Board handle.
chan WORD DIO channel number, in the range 0 to 5, from which the operating mode shall

bereturned. Specifying anillegal channel number will cause the
ERR | LLEGAL_ _PARMerror flag to be set.

Returns: WORD value indicating the operating mode of the specified DIO channel. Zero indicates the channel is operating
as astandard DIO, non-zero indicates the channel is operating as a counter overflow output (see Table 7 for
associated counter channel numbers).

Example: TELEELIEELL i bbb i rrrrrr
/1 Display the operating nmode of board number 0, DI O channel 2.
PELEELTEELE i bbb rrrrrr

printf(S626_Dl OvbdeGet(0, 2) ? "Overflow Mbde" : "Standard Mode");

Sensoray Instruction Manual Model 626 Driver for Windows

455 S626 DIOWriteBankSet()

Function:

Prototype:

Returns:

Notes:

Example:

Modifies the output states of a DIO channel group.

VO D S626_DlI OWNi t eBankSet (HBD hbd, WORD group, WORD states);

Parameter Type Description

hbd HBD Board handle.

group WORD Group number of the sixteen DIO channels that will be programmed to new state
values. Legal valuesare 0, 1 or 2, as described in Section 4.5.1.

st ates WORD New logical state values to be written to the sixteen DIO channels belonging to

group. Setabit valueto zero to program the corresponding DIO channel to the
inactive state, or to oneto program the channel to the active state. See Section
4.5.1 for adescription of the bit position of each DIO channel in st at es. See
Section 4.5.2 for adiscussion of logical vs. physical channel states.

None.

This function simultaneously modifies the output states of all sixteen channels in the target DIO channel group.

Any DIO channel whichisto serve as adigital input must be programmed to the inactive state. This causes the
channel to be passively driven to the inactive state, thereby allowing an external signal source to assert control over
the physical DIO state.

TELLTLTLEE i r i ri i rr i rr it
/'l On board number 0, set DI O channels 0-11 inactive and channels 12-15 active.
TELLTLTEEE i r i r i ri i ri i rr i rr it

S626_DI ON it eBankSet (0, 0, OxFO000); /'l Channels 0-15 are in group O.

45.6 S626 DIOWriteBankGet()

Function:

Prototype:

Returns:

Notes:

Example:

Returns the output states of a DIO channel group.

WORD S626_DI ON it eBankGet (HBD hbd, WORD group);

Parameter Type Description
hbd HBD Board handle.
group WORD Group number of the sixteen DIO channels whose output states are to be returned.

Legal valuesare0, 1 or 2, as described in Section 4.5.1. Specifying a DIO group
number greater than 2 will cause the ERR_ILLEGAL_PARM error flag to be set.

WORD value containing the logical output states of all sixteen channelsin the target DIO channel group. Each bit
of the returned word represents the logical output state of the corresponding DIO channel: zero indicates the
inactive state, and oneindicatesthe active state. See Section 4.5.1 for adescription of the bit position of each DIO
channel in the returned value.

The returned value reflects the states of the board’s DIO channel output drivers, which in normal operation are the
same as the values last written by S626_DI OW i t eBankSet () . Thisisin contrast with the values returned by
S626_DI OReadBank(), which represents the input states present on the DIO channels. The value returned
from S626_DI OReadBank() can be affected by external signal sources driving the DIO channels, while the
value returned from S626_DI OW i t eBankSet () isinfluenced only by the Model 626 output drivers.

FEEEELTEELE i bbb rrrrrr
/1 Display the output states of DI O channels 16-31 on board nunber O.
FEEEELTEELE i bbb rrrrrr

Sensoray Instruction Manual Model 626 Driver for Windows

Example:

WORD states = S626_DlI OWiteBankGet(0, 1); /1l Channels 16-31 are in group 1.

for (int i =15; i >=0; i--)
printf("DIO %l driver state = %@d\n", i + 16, (states > i) & 1);

TELEETIEELL bbb r i rrrrrr
/1 This function sets the specified DI O channel (chan nunbers range fromO

/1 to 47) to the active state wi thout affecting any other DI O channels.
TELEELILELL i i r i i rrrrrr

VO D DI O_Set ToActive(HBD hbd, WORD chan)

{
WORD group = chan >> 4; /'l Group nunber associated wi th chan.
WORD mask = 1 << (chan & 15); /1 Bit mask for chan within its group.
S626_DI ON it eBankSet (0, group, S626_DI ONiteBankGet(O, group) | mask);
}

457 S626 DIOReadBank()

Function:

Prototype:

Returns:

Notes:

Example:

Returns the logical input states of a DIO channel group.

WORD S626_DI OReadBank(HBD hbd, WORD group);

Parameter Type Description
hbd HBD Board Handle.
group WORD Group number of the sixteen DIO channels whose input states will be returned.

Legal valuesare0, 1 or 2, as described in Section 4.5.1. Specifying a DIO group
number greater than 2 will cause the ERR_ILLEGAL_PARM error flag to be set.

WORD value containing the logical input states of all sixteen channelsin the target DIO group. Each bit of the
returned word represents the logical input state of the corresponding DIO channel: zero indicates the inactive state,
and oneindicatesthe active state. See Section 4.5.1 for a description of the bit position of each DIO channel inthe
returned word value.

The returned value reflects the driven states of the board’ s DIO inputs. The valueis thus influenced by both the
board's DIO output drivers and any external signal sources that may be physically driving DIO channels.

TELEEETEELE i bbb rrrrrr
/1 Display the logical input states of DI O channels 32-47 on board number O.
TILEELTEELE i bbb rrrrrr

WORD states = S626_DI OReadBank(0, 2); /'l Channels 32-47 are in group 2.
for (int i =15; i >=0; i--)
printf("DIO %l input state = %d\n", i + 32, (states >1i) &1);

Sensoray Instruction Manual Model 626 Driver for Windows

45.8 S626 DIOEdgeSet()

Function:

Prototype:

Returns:

Notes:

Example:

Programs the polarity of edges that will trigger DIO event captures.

VO D S626_DI OEdgeSet (HBD hbd, WORD group, WORD edges);

Parameter Type Description
hbd HBD Board Handle.
group WORD Group number of the sixteen DIO channels whose edge polarities will be

programmed. Legal valuesare 0, 1 or 2, as described in Section 4.5.1.
Specifying a DIO group number greater than 2 will cause the
ERR_ILLEGAL_PARM error flag to be set.

edges WORD Edge polarities to be used by the sixteen DIO channels belonging to gr oup.
Set a bit value to zero to select the active-to-inactive (falling) edge, or to oneto
select the inactive-to-active (rising) edge. See Section 4.5.1 for a description of
the bit position of each DIO channel in edges.

None.

This function should be called to select the polarity of edge events to be captured before enabling captures. After
programming the edge polarities, capturing may then be enabled by means of S626_DI OCapEnabl eSet () .

Only DIO channels 0 through 39 have edge capture capability. Consequently, edges bits that reference DIO
channels 40 through 47 will be ignored when addressing channel group number 2.

PELEELTEELE i i bbb r i i rrrrrr
/1 On board 0, configure DI O channels 0-7 to capture DIO rising edge events,

/1 and channels 8-15 to capture falling edge events.

TELEELTEEL i bbb rrrrrr

S626_DI OEdgeSet (0, 0, OxO00FF); /1 Channels 0-15 are in group O.

45.9 626 DIOEdgeGet()

Function:

Prototype:

Returns:

Notes:

Returns the polarity of edges that will trigger DIO event captures.

WORD S626_DI OEdgeGet (HBD hbd, WORD group);

Parameter Type Description
hbd HBD Board Handle.
group WORD Group number of the sixteen DIO channels whose edge polarities are to be

returned. Legal valuesare0, 1 or 2, as described in Section 4.5.1. Specifying a
DIO group number greater than 2 will cause the ERR_ILLEGAL_PARM error
flag to be set.

WORD value containing the event capture edge polaritiesin use by the sixteen DIO channels belonging togr oup.
Asdescribed in Section 4.5.1, each bit represents the edge polarity of one DIO channel: zero indicates active-to-
inactive (falling) edge, and one indicates inactive-to-active (rising) edge.

Only DIO channels 0 through 39 have edge capture capability. Conseguently, you should ignore any bits that
reference DIO channels 40 through 47 when addressing channel group number 2.

Sensoray Instruction Manual Model 626 Driver for Windows

Example: TELEEETEELE i bbb rrrrrr
/1 Display board 5, DI O channel 0-15 edge polarities.
TELEELTEELL i bbb rrrrrr

WORD edges = S626_DI OedgeGet (5, 0); /1l Channels 0-15 are in group O.
for (int i =15; i >=0; i--)
printf("DIO % edge = %@d\n", i, (edges >1i) &1);

4510 S626 DIOCapEnableSet()

Function: Enables/disables capturing of DIO edge events.

Prototype: VO D S626_DI CCapEnabl eSet (HBD hbd, WORD group, WORD chans, WORD enable);

Parameter Type Description
hbd HBD Board Handle.
group WORD Group number of the sixteen DIO channels that are to be enabled/disabled for

event capturing. Legal valuesare 0, 1 or 2, as described in Section 4.5.1.
Specifying a DIO group number greater than 2 will cause the
ERR_ILLEGAL_PARM error flag to be set.

chans WORD Bit flags indicating which of the sixteen DIO channels belonging to gr oup are
to be affected. See Section 4.5.1 for a description of the bit position of each
DIO channel inchans. Set abit flag to zero to exclude the associated channel,
or to one to cause the channel’ s event captures to be enabled or disabled as
specified by enabl e.

enabl e WORD Indicates whether DIO channels specified by chans are to have event captures
enabled or disabled. Set to zero to disable event captures, or to one to enable
event captures.

Returns: None.

Notes: In order for edge events to be captured on a specific channel, the channel must have edge event capturing enabled
by this function. Typically, the edge polarity isfirst selected by means of S626_DI OEdgeSet () , and then
S626_Dl OCapEnabl eSet () iscalled to enable captures of the selected edge.

Only DIO channels 0 through 39 have edge capture capability. Consequently, chans bits that reference DIO
channels 40 through 47 will be ignored when addressing channel group number 2.

Example: PELELLTELLL i bbb rrrrrr
/1 On board 4, enable event capturing on channels 0-2 and | eave event
/'l capture enabl es unnodified on channels 3-15. The chans value wl|
/1 be binary 0000_0000_0000_0111 (= decinmal 7) to nodify only channels 0-2.
TELEELTELLLE e bbb rrrrrr

#def i ne DI OCAP_ENABLE 1
#define DI OCAP_DI SABLE 0

S626_DI OCapEnabl eSet (4, 0, 7, DI OCAP_ENABLE); /1 Channels 0-15 are in group O.

Sensoray Instruction Manual Model 626 Driver for Windows

45.11 S626 DIOCapEnableGet()

Function:

Prototype:

Returns:

Notes:

Example:

Returns DIO capture enables.

WORD S626_DI OCapEnabl eGet (HBD hbd, WORD group);

Parameter Type Description
hbd HBD Board Handle.
group WORD Group number of the sixteen DIO channels whose capture enables are to be

returned. Legal valuesare0, 1 or 2, as described in Section 4.5.1. Specifying a
DIO group number greater than 2 will cause the ERR_ILLEGAL_PARM error
flag to be set.

WORD value containing the event capture enables of the sixteen DIO channels belonging to gr oup. Asdescribed
in Section 4.5.1, each bit represents the edge polarity of one DIO channel: zero indicates channel event capturing is
disabled, and one indicates capturing is enabled.

Only DIO channels 0 through 39 have edge capture capability. Consequently, you should ignore any returned bits
that reference D10 channels 40 through 47 when addressing channel group number 2.

TELEELTEELL i bbb rrrrrr
/1 Display the states of DI O channel 0-15 capture enables on board number 5.
TEEEELTEEEL i rrrrrr

WORD enabl es = S626_DI OCapEnabl eGet(5, 0); /1l Channels 0-15 are in group O.
for (int i =15; i >=0; i--)
printf("DIO % cap enable = %@\n", i, (enables > i) &1);

4512 S626 DIOCapStatus()

Function:

Prototype:

Returns:

Notes:

Returns captured DIO events.

WORD S626_DI OCapSt at us(HBD hbd, WORD group);

Parameter Type Description
hbd HBD Board Handle.
group WORD Group number of the sixteen DIO channels whose capture status are to be

returned. Legal valuesare0, 1 or 2, as described in Section 4.5.1. Specifying a
DIO group number greater than 2 will cause the ERR_ILLEGAL_PARM error
flag to be set.

WORD value containing the event capture status of the sixteen DIO channels belonging to gr oup. Asdescribed
in Section 4.5.1, each bit represents the edge polarity of one DIO channel: zero indicates no edge events have been
captured, and one indicates an edge event has been captured.

After capturing an edge event on a DIO channel, the associated capture status flag will be active and, if enabled by
S626_DI O nt Enabl eSet (), aninterrupt request will be asserted.

To reset achannel’s capture status flag (and negate any affiliated interrupt request), you must disable its capture
enable flag by calling S626_DI OCapEnabl eSet () . Youmay thencall S626_DI OCapEnabl eSet () again
to re-enable capturing for subsequent edge events.

Only DIO channels 0 through 39 have edge capture capability. Consequently, you should ignore any returned bits
that reference D10 channels 40 through 47 when addressing channel group number 2.

Sensoray Instruction Manual Model 626 Driver for Windows

Example:

TELEEETEELE i bbb rrrrrr
/1 Display the capture states of DI O channel 0-15 on board number 2.
TELEELTEELL i bbb rrrrrr

WORD caps = S626_DI OCapStatus(2, 0); /1 Channels 0-15 are in group O.
for (int i =15; i >=0; i--)
printf("D O %l captured = %\n", i, (caps >>i) & 1);

45.13 S626 _DIOCapReset()

Function:

Prototype:

Returns:

Notes:

Example:

Resets DIO event capture flags.

VO D S626_DI OCCapReset (HBD hbd, WORD group, WORD chans);

Parameter Type Description
hbd HBD Board Handle.
group WORD Group number of the sixteen DIO channels whose capture flags are to be

affected. Legal valuesare 0, 1 or 2, as described in Section 4.5.1. Specifying a
DIO group number greater than 2 will cause the ERR_ILLEGAL_PARM error
flag to be set.

chans WORD Bit flags indicating which of the sixteen DIO channels belonging to gr oup are
to be affected. See Section 4.5.1 for a description of the bit position of each
DIO channel inchans. Set abit flag to one to reset the channel’s event
capture flag, or to zero to leave the channel’ s event capture flag in its current
state.

None.

After capturing an edge event on a DIO channel, the associated capture status flag will be active and, if enabled by
S626_DI O nt Enabl eSet (), aninterrupt request will be asserted. Call this function to reset one or more DIO
capture flags after the associated events have been processed. In addition to resetting the capture flags,

S626_DI OCapReset () also clears any corresponding interrupt service requests.

Only DIO channels 0 through 39 have edge capture capability. Consequently, chans bits that reference DIO
channels 40 through 47 will be ignored when addressing channel group number 2.

TELEELTEEEE i bbb rrrrrr
/'l Reset event capture flags for board 2, DI O channels 0 and 1.
TELEELTEELL i bbb rrrrrr

S626_DI OCapReset (2, 0, 0x0003); /1 Channels 0 and 1 are in group O.

Sensoray Instruction Manual Model 626 Driver for Windows

4514 S626_DIOIntEnableSet()

Function:

Prototype:

Returns:

Notes:

Example:

Enables/disables interrupt requests in response to captured D10 edges.

VO D S626_DI O nt Enabl eSet (HBD hbd, WORD group, WORD enabl es);

Parameter Type Description
hbd HBD Board Handle.
group WORD Group number of the sixteen DIO channels whose interrupt enables are to be modified.

Legal valuesare0, 1 or 2, as described in Section 4.5.1. Specifying a DIO group
number greater than 2 will cause the ERR_ILLEGAL_PARM error flag to be set.

enabl es WORD Bit flags indicating, for each of the sixteen DIO channels belonging to gr oup,
whether the captured edge interrupt shall be enabled or disabled. See Section 4.5.1 for
adescription of the bit position of each DIO channel inchans. Setabit valueto zero
to disable the associated channel interrupt, or to one to enable the interrupt.

None.

This function enables or disables interrupt request generation in response to captured edges on DIO channels. Ina
typical application program, edge captures are configured and enabled by calling S626_DI OEdgeSet () and
S626_Dl OCapEnabl eSet () beforeinvoking S626_DI O nt Enabl eSet () to enable capture interrupts.

Only DIO channels 0 through 39 have edge capture capability. Consequently, enabl es bits that reference DIO
channels 40 through 47 will be ignored when addressing channel group number 2.

See “Example: DIO Interrupts’ on page 51.

4.5.15 S626_DIOIntEnableGet()

Function:

Prototype:

Returns:

Notes:

Example:

Returns DIO interrupt enables.

WORD S626_DI O nt Enabl eGet (HBD hbd, WORD group);

Parameter Type Description
hbd HBD Board Handle.
group WORD Group number of the sixteen DIO channels whose interrupt enables will be returned.

Legal valuesare0, 1 or 2, as described in Section 4.5.1. Specifying a DIO group
number greater than 2 will cause the ERR_ILLEGAL_PARM error flag to be set.

WORD value containing the interrupt enables of the sixteen DIO channels belonging to gr oup. Asdescribed in
Section 4.5.1, each bit represents the interrupt enable of one DIO channel: zero indicates the interrupt is disabled,
and one indicates the interrupt is enabled.

Only DIO channels 0 through 39 have the ability to generate interrupt requests in response to captured edge events.
When addressing channel group number 2, all returned bits that reference DIO channels 40 through 47 should be
ignored.

TIEEELTEEEL bbb rrrd
/1 Display the interrupt enables of DI O channel 0-15 on board nunber 2.
TIEEELTEEEL bbb rrrd

WORD caps = S626_DI O nt Enabl eGet(2, 0); /1l Channels 0-15 are in group O.
for (int i =15; i >=0; i--)
printf("DIO %l interrupt enable = %d\n", i, (caps >>i) & 1);

Sensoray Instruction Manual Model 626 Driver for Windows

4.6 Counter Functions

4.6.1 Counter Operating M odes

Counters may be programmed to operate in various behavioral configurations called modes. The following modes are supported
by the Model 626 board:

& Timer. When operating in this mode, a counter will count either up or down at a constant rate.
& Counter. This mode supports external, two-phase or single-phase clock sources.

In the case of atwo-phase, quadrature-encoded clock source, count and direction controls are derived from the two clock
phases. Clock multipliers of 1x, 2x and 4x are supported.

In the case of a single-phase clock source, the counter behaves as a simple event counter. Count control is derived from the
clock, and direction control is derived from adirection control input signal. Clock multipliers of 1x, 2x and 4x are legal, but
use of the 2x and 4x multipliers is not recommended.

= Extender. This mode, which applies only to B counters, causes a counter to behave as an extension of a paired A counter
that is configured as a Timer or Event Counter.

4.6.1.1 Input Signal Names

Each counter mode employs a unique combination of signal sources for the Clock, Direction and Index signals. To standardize
the descriptions of counter operating modes, the following symbolic names have been assigned to the various counter input
signal sources:

Signal Name Function

SYS C Fixed frequency, 2.0 MHz clock.

ENC C Encoder clock input, B-phase.

ENC D Encoder clock input, A-phase.

ENC X Encoder index input.

OVR_A Overflow output from associated A counter.

4.6.1.2 Using DIOs as Counter Outputs
DIO channels 0 through 5 may be configured to function as counter overflow outputs. See“S626_DIOModeSet()” and
“S626_DIOModeGet()” on page 19 for details.

4.6.1.3 Mode Descriptions

Counter operating modes are listed in Table 9.

Table 8: Symbols used to describe programmable attributes.
These modes are selected by means of the

S626_Count er ModeSet () function, as Symbol Meaning
described in Section 4.6.3. P Attribute is programmable.
& Attributeis not programmable.
1 Clock multiplier 1x is supported.
1,24 Clock multipliers 1x, 2x and 4x are supported.

Sensoray Instruction Manual Model 626 Driver for Windows

For each mode, Table 9 lists the input signal sources (detailed in Section 4.6.1.1) and all supported programmabl e attributes.
Symbols used to describe the programmabl e attributes are listed in Table 8.

Table 9: Counter operating modes.

Input Signal Programmable)
Sour ces Attributes Applies o
Mode Clock Clock To Description
. . oC OCl
Count
Ce Rt Polarity |Multiplier ounters
)) Fixed 2 MHz Clock.
Timer SYS C | Fi xed .1 1 AandB
Counter ENC_C/ ENC_D . 124 | AandB Clock and direction driven by external inputs.
Extender | OVR A | ENC_D . 1 B only C_I ock_ drlve_n by overflow oqtput from paired A counter,
direction driven by external input.

4.6.2 Configuration Options

A counter’s operational configuration is programmed by means of S626_Count er ModeSet () and may beretrieved via
S626_Count er MbdeGet () . These two functions employ a data structure, named “COUNTER_SETUP,” to convey all
counter configuration parameters. The COUNTER_SETUP structure isaWORD value that contains a collection of bit fields, as
shown in Figure 3.

Figure 3: Bitfieldsinthe COUNTER_SETUP structure.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 I nt Lat ch Load 0 I ndx || ndx dk ak ak ak
Src Src Src Src | Pol Src Pol wul t Enab
- J
'

S626_Count er ModeSet ()
i gnores these fields

Sel ects basic
operating node
Except for the | nt Sr ¢ and Lat chSr ¢ bit fields, all of the bit fieldsin the COUNTER_SETUP structure are used by both

S626_Count er MbdeSet () and S626_Count er ModeGet (). Thel nt Src and Lat chSr ¢ bit fields are utilized only
by S626_Count er MbdeGet () ; they are ignored by the S626_Count er ModeSet () function.

Bit fields that contain “0" are not used. To ensure compatibility with future driver enhancements, however, applications should
be designed so as to ignore these fields.

The functions of the COUNTER_SETUP bit fields are described in the following sections. Note that the fundamental operating
mode—Timer, Counter or Extender—is determined by the Cl kSr ¢ bit field, as described in Section 4.6.2.6.

46.2.1 IntSrc

I nt Sr ¢ specifies the captured events that will cause an interrupt request.

Thel nt Sr ¢ bit fieldisignored by S626_Count er ModeSet () . Wheninvoked, S626_Count er MbdeSet () resetsall
captured events on the target counter and disables the counter’s interrupts by forcing | nt Sr ¢ to | NTSRC_NONE. After
configuring a counter, S626_Count er | nt Sour ceSet () may be called to enable the counter to generate interrupts.

Model 626 Driver for Windows

Sensoray Instruction Manual

I nt Sr ¢ may have one of the following values:

Value Symbolic Name Eventsthat will generate interrupts.
0 | NTSRC_NONE None. Interrupts are disabled.
1 | NTSRC_OVER Captured counter overflow.
2 | NTSRC_| NDX Captured counter index.
3 | NTSRC_ANY Captured counter overflow or index.

4.6.2.2 LatchSrc

Lat chSr ¢ specifies the events that will cause the counter contents to be latched. This attributeis shared by the A and B
counters belonging to a counter pair.

Thisbit field isignored by S626_Count er MbdeSet () . When invoked, S626_Count er ModeSet () will preserve the
current state of Lat chSr ¢ on the target counter. You must use S626_Count er Lat chSour ceSet () to modify the value
of Lat chSr ¢ for the target counter.

Lat chSr ¢ may have one of the following values:

Value Symbolic Name Trigger Condition
0 LATCHSRC AB_READ Counter A or B latched when read by S626_Count er ReadLat ch() .
1 LATCHSRC A | NDXA Counter A latched in response to counter A index.
2 LATCHSRC B | NDXB Counter B latched in response to counter B index.
3 LATCHSRC B OVERA Counter B latched in response to counter A overflow.

4.6.2.3 LoadSrc

LoadSr ¢ specifies the trigger event that will cause the preload register to be transferred into the counter core. This event may
be selected by means of the LoadSr ¢ bit in conjunction with S626__Count er MbdeSet (), or alternatively, by calling

S626_Count er LoadTri g() .

The meaning of LoadSr c bit field depends on whether an A or B counter is being addressed. In the case of A counters,
LoadSr ¢ may be set to one of the following values:

Value Symbolic Name Trigger Event
0 LOADSRC | NDX Counter A index.
1 LOADSRC_OVER Counter A overflow.
2 L OADSRCA _NONE Disabled.
3 LOADSRC_NONE Disabled.

In the case of B counters, LoadSr ¢ may be set to one of the following values:

Value

Symbolic Name

Trigger Event

0

LOADSRC_| NDX

Counter B index.

Sensoray Instruction Manual

Model 626 Driver for Windows

Value Symbolic Name Trigger Event
1 LOADSRC_OVER Counter B overflow.

2 LOADSRCB_OVERA Paired counter A overflow. Thisoption istypically used in frequency counter applicationsin
which the A counter (configured as a Timer) provides measurement interval control and the
paired B counter (configured as a Counter) accumulates pul ses from the frequency source.
Each time the A counter overflows, the B counter is automatically latched and reset to zero in
preparation for the next measurement interval.

3 LOADSRC_NONE Disabled.

4.6.2.4 IndxSrc
I ndx Sr ¢ specifies the signal source for the counter’s index input.

| ndxSr ¢ may be set to one of the following values:

Value Symbolic Name Description
0 | NDXSRC_HARD Counter index is driven by the encoder physical index input, ENC_X, or by software
control viaS626_Count er Sof t | ndex() .
1 | NDXSRC_SOFT Counter index is controlled only by software via S626_Count er Sof t | ndex() .

The physical encoder index input, ENC_X, isignored.

4.6.2.5 IndxPal

| ndexPol specifies the index edge to be used for triggering index-driven events. | ndexPol isforcedto zeroif | ndxSr c is
set to | NDXSRC_SOFT.

| ndexPol may be set to one of the following values:

Value Symbolic Name Description
0 | NDXPOL_PCS Selects the rising (inactive-to-active) edge transition.
1 | NDXPOL_NEG Selects the falling (active-to-inactive) edge transition. Thiswill beignored and

| ndexPol will besettoRi si ng ifthel ndxSr ¢ bit field isset to | NDXSRC_SOFT.

4.6.26 ClkSrc

Cl kSr c specifies the signal source to be used for clocking the counter core. In addition, this bit field implicitly determines the
basic operating mode for the counter channel.

Cl kSr ¢ may be set to one of the following values:

Value Symbolic Name Description

0-1 CLKSRC_COUNTER Applicableto A and B counters. Selects ENC_Cand ENC_D as clock signal sources.
Quadrature-encoded, two-phase clocks are connected to ENC_C and ENC_D. In the case
of single-phase clock sources, the clock signal connects to ENC_C and the direction
control signal connectsto ENC_D.

2 CLKSRC_TI MER Applicableto A and B counters. Selects the 2 MHz system clock as the clock source.
Count direction is controlled by the Cl kPol bit field.
3 CLKSRC_EXTENDER Applicableto B counters only. Selects the overflow output from the paired A counter as

the clock source, and ENC_D as the direction control signal. If thisis specified for an A
counter when calling S626_Count er MbdeSet () , the configuration request will be
rejected and the counter will not be configured to the new settings.

Sensoray Instruction Manual Model 626 Driver for Windows

4.6.2.7 ClkPol

Cl kPol hasafunctionality that is determined by the counter operating mode (which isimplicitly specified by Cl kSr c). Inthe
Counter and Extender modes, Cl kPol specifies the clock edge to be used for clocking the counter core. Inthe Timer mode,
Cl kPol specifies the count direction.

When the counter is operating in Timer mode, Cl kPol may be set to one of the following values:

Value Symbolic Name Description
0 CNTDI R_UP Programs the counter to count up.
1 CNTDI R_DOWN Programs the counter to count down.

When the counter is operating in Counter or Extender mode, Cl kPol may be set to one of the following values:

Value Symbolic Name Description
0 CLKPOL_PGCS Selects the rising (inactive-to-active) clock edge transition.
1 CLKPOL_NEG Selects the falling (active-to-inactive) clock edge transition.

4.6.2.8 ClkMult

Cl kMul t specifies whether the frequency of the clock source (specified by Cl kSr ¢) will be multiplied by 1, 2 or 4 before
being applied to the counter core.

The 1x multiplier islegal in all operating modes, and the 2x and 4x multipliers are valid only in the Counter mode. The 1x
multiplier will be programmed by default if a multiplier is specified that is invalid for the specified operating mode. Although
they are valid in the Counter mode, the 2x and 4x multipliers should not be used with counters that are driven by single-phase
clock sources as this will cause unpredictable behavior.

Cl kMul t may be set to one of the following values:

Value Symbolic Name Description

0 CLKMULT_4X Validonly in Counter mode. Counter will count in response to any edge that occurs on either of the
quadrature clock inputs. Use this multiplier only with two-phase, quadrature-encoded clock sources.

1 CLKMULT_2X Valid only in Counter mode. Counter will count in response to any edge that occurs on the phase B
clock input. Use this multiplier only with two-phase, quadrature-encoded clock sources.

2-3 CLKMULT_1X Validinall modes. Counter will count in response to an inactive-to-active edge on the selected clock
input.

4.6.2.9 ClkEnab

Cl kEnab specifies the conditions that enable counting to occur. Count enabling conditions may be programmed by means of
the Cl kEnab bit in conjunction with S626__Count er ModeSet (), or aternatively, viaS626_Count er Enabl eSet () .

Cl kEnab may be set to one of the following values:

Value Symbolic Name Description
0 CLKENAB_ALWAYS Counting is always enabled, regardless of the index state.
1 CLKENAB_| NDEX Counting is enabled only when the index is active.

Sensoray Instruction Manual Model 626 Driver for Windows

4.6.3 S626 Counter M odeSet()

Function:

Prototype:

Returns:

Notes:

Example:

Programs a counter’s operational configuration.

VO D S626_Count er ModeSet (HBD hbd, WORD chan, WORD options);

Parameter Type Description
hbd HBD Board Handle.
chan WORD Counter channel number. Legal values are 0 through 5, as described in Section 3.3.

Specifying a channel number greater than 5 will cause the ERR_ILLEGAL_PARM
error flag to be set.

options WORD Configuration options, organized asa COUNTER_SETUP structure. See Section
4.6.2 for details.

None.

Always call this function first to establish a counter’s operating configuration before attempting to modify any
independently programmable attributes. Thisis necessary because S626_Count er ModeSet () initializes most
of the counter configuration attributes to either their default values or to the values specified by opt i ons.

This function clears any captured index or overflow events on the target counter channel and sets the counter
interrupt source to None, thereby disabling interrupts. Out of all the remaining programmable counter
configuration options, only the latch source (Section 4.6.8), which is shared by the A and B counters of the
associated counter pair, is left unmodified.

S626_Count er MbdeSet () will reject the configuration request and preserve the existing counter
configuration if any illegal options are specified. After calling this function, S626_Count er ModeGet () may
be called to determine whether the counter was successfully configured.

See “Counter Programming Examples” on page 38.

4.6.4 S626 Counter M odeGet()

Function:

Prototype:

Returns:

Notes:

Returns a counter’s operational configuration.

WORD S626_Count er ModeGet (HBD hbd, WORD chan);

Parameter Type Description
hbd HBD Board Handle.
chan WORD Counter channel number. Legal values are O through 5, as described in Section 3.3.

Specifying a channel number greater than 5 will cause the ERR_ILLEGAL_PARM
error flag to be set.

WORD value, organized asa COUNTER_SETUP structure. See Section 4.6.2 for details.

S626_Count er MbdeGet () providesamechanism for retrieving programmed counter configuration attributes.
This can be useful in several situations:
& Confirms that a counter was successfully configured by S626_Count er MbdeSet () .

& |n battery-backed applications, this function can be used to determine the current counter configurations
following a power failure, thereby enabling counter operations to resume after a system power failure has
occurred.

& Serves as adiagnostic tool for verifying hardware operation during application devel opment.
& Provides support for application run-time diagnostics.

= Eliminates the need for applications to maintain storage for counter configuration information.

Sensoray Instruction Manual Model 626 Driver for Windows

Example: TEEEELIEEEL i bbb rrrrrrrirrrgg
/1 Display the current clock nultiplier for board 0, counter 2B.
TEEEELIEEEL i i i bbb

switch ((S626_CounterModeCGet(0, 5) > 1) & 3)

{
case 0: printf("Mult is 4x.\n"); break;

case 1: printf("Mt is 2x.\n"); break;
case 2: printf("Mult is 1x.\n"); break;

4.6.5 S626 Counter EnableSet()

Function: Specifies the conditions that enable counting to occur.

Prototype: VO D S626_Count er Enabl eSet (HBD hbd, WORD chan, WORD cond);

Parameter Type Description
hbd HBD Board Handle.
chan WORD Counter channel number. Legal values are O through 5, as described in Section 3.3.

Specifying a channel number greater than 5 will cause the ERR_ILLEGAL_PARM
error flag to be set.

cond WORD Specifies the conditions that enable counting to occur. See below for details.

The cond argument may be set to one of the following values:

Value Symbolic Name Description
0 CLKENAB_ALWAYS Counting is always enabled, regardless of the index state.
1- 65535 CLKENAB_| NDEX Counting is enabled only when the index is active.

Returns: None.

Notes: Count enabling conditions may also be programmed by means of S626_Count er ModeSet () . The
S626_Count er MbdeGet () function can be used to determine the count enabling conditions currently in effect.

Example: See“Counter Programming Examples’ on page 38.

4.6.6 S626 CounterPreload()

Function: Writes avalue to a counter’s preload register.

Prototype: VO D S626_Count er Prel oad(HBD hbd, WORD chan, DWORD val ue);

Parameter Type Description
hbd HBD Board Handle.
chan WORD Counter channel number. Legal values are 0 through 5, as described in Section

3.3. Specifying a channel number greater than 5 will cause the
ERR_ILLEGAL_PARM error flag to be set.

val ue DWORD Valueto be written to the preload register. Only the least significant 24 bits of
this value are written to the preload register; the high byte is ignored.

Returns: None.

Sensoray Instruction Manual Model 626 Driver for Windows

Notes: This function stores avalue in a counter’s preload register, but it does not transfer the value to the counter core.
The preload register is transferred to the counter core only in response to a predefined Load Trigger event. See
Section 4.6.7 for details.

Example: See“Counter Programming Examples’ on page 38.

4.6.7 S626 CounterLoadTrigSet()

Function: Selects the events that will cause a counter’s preload register to be transferred to its counter core.

Prototype: VO D S626_Count er LoadTri gSet (HBD hbd, WORD chan, WORD events);

Parameter Type Description
hbd HBD Board Handle.
chan WORD Counter channel number. Legal values are O through 5, as described in Section 3.3.

Specifying a channel number greater than 5 will cause the ERR_ILLEGAL_PARM
error flag to be set.

events WORD Indicates the events that trigger atransfer of data from the preload register to the counter
core. See below for details.

The event s argument specifies the event or events that will trigger the transfer of data from the preload register
into the counter core. The meaning of event s depends on whether an A or B counter is being addressed.

In the case of A counters, event s may be set to one of the following values:

Value Symbolic Name Trigger Event
0 LOADSRC | NDX Counter A index.
1 LOADSRC_OVER Counter A overflow.
2 LOADSRCA NONE Disabled.
3 LOADSRC_NONE Disabled.
4- 65535 --- Illegal. Thiswill causethe ERR_ILLEGAL_PARM error flag to be set.

In the case of B counters, event s may be set to one of the following values:

Value Symbolic Name Trigger Event

0 LOADSRC_| NDX Counter B index.

1 LOADSRC_OVER Counter B overflow.

2 LOADSRCB_OVERA Counter A overflow.

3 LOADSRC_NONE Disabled.

4- 65535 --- [llegal. Thiswill causethe ERR_ILLEGAL_PARM error flag to be set.
Returns: None.
Notes: Preload trigger events may also be programmed by means of S626_Count er ModeSet () . The

S626_Count er MbdeGet () function can be used to determine the preload trigger events currently in effect.

Example: See“Counter Programming Examples’ on page 38.

Sensoray Instruction Manual Model 626 Driver for Windows

4.6.8 S626 Counter L atchSour ceSet()

Function:

Prototype:

Returns:

Notes:

Example:

Selects the events that will cause a counter’s contents to be transferred to its latch register.

VO D S626_Count er Lat chSour ceSet (HBD hbd, WORD chan, WORD events);

Parameter Type Description
hbd HBD Board Handle.
chan WORD Counter channel number. Legal values are O through 5, as described in Section

3.3. Specifying a channel number greater than 5 will cause the
ERR_ILLEGAL_PARM error flag to be set.

events WORD Indicates the events that trigger atransfer of data from the counter core to the
latch register. See below for details.

The event s argument specifies which events will act as triggers for transferring the counts from the counter core
into the latch register. This argument may be set to one of the following values:

Value Symbolic Name Description
0 LATCHSRC AB READ Counter A or B latched when read by S626_Count er ReadLat ch() .
1 LATCHSRC A | NDXA Counter A latched in response to counter A index.
2 LATCHSRC B | NDXB Counter B latched in response to counter B index.
3 LATCHSRC B OVERA Counter B latched in response to counter A overflow.
4- 65535 --- [llegal. Thiswill causethe ERR_ILLEGAL_PARM error flag to be set.
None.

This function selects the latch trigger for both the A and B counters of a counter pair. When the latch trigger is
programmed for an A (or B) counter, the paired B (or A) counter is also programmed at the same time.

See “Counter Programming Examples” on page 38.

4.6.9 S626_ Counter ReadL atch()

Function:

Prototype:

Returns:

Notes:

Example:

Read a counter’s latch register.

DWORD S626_Count er ReadLat ch(HBD hbd, WORD chan);

Parameter Type Description
hbd HBD Board Handle.
chan WORD Counter channel number. Legal values are 0 through 5, as described in Section 3.3.

Specifying a channel number greater than 5 will cause the ERR_ILLEGAL_PARM
error flag to be set.

DWORD consisting of the value stored in the counter latch register. The returned number will have a value
between 0x00000000 and OxO00OFFFFFF, inclusive.

Each counter latch register is shared by both the A and B counter belonging to a counter pair. Depending on the
programming of the counter latch trigger source, various events will cause the counter core to be transferred to the
counter latch register. See Section 4.6.8 for details.

See “Counter Programming Examples” on page 38.

Sensoray Instruction Manual Model 626 Driver for Windows

4.6.10 S626 Counter CapStatus()

Function:

Prototype:

Returns:

Notes:

Example:

Returns event capture flags for all counter channels.
WORD S626_Count er CapSt at us(HBD hbd);

Parameter Type Description
hbd HBD Board Handle.

WORD value containing Overflow and Index capture flags for all counter channels. Thisvalueis structured as a
set of bit fields as shown in Figure 4.

Figure 4: WORD value returned by S626_Counter CapStatus().

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Over |Over |Over |Over |Over |Over |I ndx [l ndx |l ndx [l ndx [l ndx || ndx 0 0 0
2B 2A 1B 1A | OB 0A 2B 2A 1B 1A | OB 0A

Each capture flag occupies a one-bit field in the returned WORD value. A logic onein abit field indicates that the
associated event is captured, while a zero in the bit field indicates that the associated event has not been captured.
For example, alogic onein bit 7 indicates that an Index edge was detected on counter 1B.

The four least-significant bits of the returned value is aways zero. This enables rapid testing for captured events
on all counters.

Counter event capturing is always enabled. A counter’s event capture flags are reset to zero in response to any of
the following actions:

& S626_Count er ModeSet () iscalled to set the counter’s operating mode.
& S626_Count er CapFl agsReset () iscalled to explicitly reset the counter’s capture flags.

& S626_Count er | nt Sour ceSet () iscalled to select the counter’ s interrupt source.

See “Counter Programming Examples” on page 38.

4.6.11 S626 Counter CapFlagsReset()

Function:

Prototype:

Returns:

Notes:

Example:

Resets a counter’ s event capture flags.

VO D S626_Count er CapFl agsReset (HBD hbd, WORD chan);

Parameter Type Description
hbd HBD Board Handle.
chan WORD Counter channel number. Legal values are O through 5, as described in Section 3.3.

Specifying a channel number greater than 5 will cause the ERR_ILLEGAL_PARM
error flag to be set.

None.

This function resets the Overflow and Index event capture flags associated with the target counter (see Figure 4).
In cases where either (or both) of these events flags are selected as interrupt sources, this function will negate the
pending interrupt service request.

See “Counter Programming Examples” on page 38, and “Example: Counter Interrupts’ on page 52.

Sensoray Instruction Manual Model 626 Driver for Windows

4.6.12 S626_Counter Softl ndex()

Function:

Prototype:

Returns:

Notes:

Example:

Toggles a counter’ s index.

VO D S626_Count er Sof t | ndex(HBD hbd, WORD chan);

Parameter Type Description
hbd HBD Board Handle.
chan WORD Counter channel number. Legal values are O through 5, as described in Section 3.3.

Specifying a channel number greater than 5 will cause the ERR_ILLEGAL_PARM
error flag to be set.

None.

S626_Count er Sof t | ndex () briefly inverts a counter channel’ sindex so as to produce an index pulse. This
has the effect of simulating a hardware pulse on the currently selected index input. This can be useful for triggering
index-controlled actions, such as counter preloading or latching, under software control.

This function does not physically drive the selected index input signal. Instead, it modifies an internal, buffered
image of the applied physical input.

See “Counter Programming Examples” on page 38.

4.6.13 S626 Counter I ntSour ceSet()

Function:

Prototype:

Returns:

Notes:

Specifies the captured events that are permitted to cause interrupts.

VO D S626_Count er | nt Sour ceSet (HBD hbd, WORD chan, WORD events);

Parameter Type Description
hbd HBD Board Handle.
chan WORD Counter channel number. Legal values are O through 5, as described in Section 3.3.

Specifying a channel number greater than 5 will cause the ERR_ILLEGAL_PARM
error flag to be set.

events WORD Specifies the events that will cause interrupts. See below for details.

The event s parameter may be set to one of the following values:

Value Symbolic Name Captured eventsthat will cause interrupts.

0 | NTSRC_NONE None. Interrupts will be disabled.

1 | NTSRC_OVER Counter overflow.

2 | NTSRC _| NDX Counter index.

3 | NTSRC_ANY Counter overflow or index.
4- 65535 --- [llegal. Thiswill causethe ERR_ILLEGAL_PARM error flag to be set.
None.

In addition to selecting the events that can cause interrupts, this function also resets the Index and Overflow capture
flags for the target counter channel. This prevents interrupts from occurring immediately in case interrupts are
being enabled for events that have already been captured.

To enable counter interrupts, this function must be called after S626_Count er ModeSet () has been called, as
S626_Count er MbdeSet () automatically disables all interrupts for the target counter channel.

Sensoray Instruction Manual Model 626 Driver for Windows

Example:

See Section 4.7, and “ Example: Counter Interrupts’ on page 52

4.7 Counter Programming Examples

4.7.1 Constants Used in Examples

Various numerical constants are referenced by the counter programming examples. Instead of duplicating constants in each
example, all of the constants have been gathered here as they would be in an application include file. The following source code
defines most of the constants used in the programming examples.

[EEEEEEEEEr bbb e r e

/'l Nunerical

constants used by the counter progranmi ng exanpl es.

[EEEEEEEEE bbb e r e e rrd

#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i

#def i
#def i

#def i
#def i

#def i
#def i
#def i

#def i
#def i
#def i
#def i

#def i
#def i

#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne

ne
ne
ne
ne

ne
ne
ne
ne

ne
ne

ne
ne

ne
ne
ne

ne
ne
ne
ne

ne
ne

ne
ne
ne

ne
ne
ne
ne
ne
ne
ne

LOADSRC_I NDX
LOADSRC_OVER
LOADSRCB_OVERA
LOADSRC_NONE

| NTSRC_NONE
| NTSRC_OVER
I NTSRC_| NDX
| NTSRC_BOTH

LATCHSRC AB_READ
LATCHSRC_A_| NDXA
LATCHSRC B_| NDXB
LATCHSRC B_OVERA

| NDXSRC_HARD
| NDXSRC_SOFT

| NDXPOL_PGCs
| NDXPOL_NEG

CLKSRC_COUNTER
CLKSRC_TI MER
CLKSRC_EXTENDER

CLKPOL_PCS
CLKPOL_NEG
CNTDI R_UP
CNTDI R_DOWN

CLKENAB_ALWAYS
CLKENAB_I| NDEX

CLKMULT_4X
CLKMULT_2X
CLKMULT_1X

BF_LOADSRC
BF_I NDXSRC
BF_I NDXPOL
BF_CLKSRC

BF_CLKPOL

BF_CLKMULT
BF_CLKENAB

o P OPFr O w N o W N PP O WN PO W N - O

N -

OFrRr WhoNO

11
Il
11
Il
11
11
11
11
11
11
11
Il
11
11
11
11
11
11
11
11
Il
11
Il
11
11
11
Il
11
11
Il
11
11
11
11
11
11
11
I
I
Il
11
Il
Il
Il
Il
11

LoadSrc val ues:
Prel oad core in response to | ndex.
Prel oad core in response to Overfl ow
Prel oad B core in response to A Overfl ow.
Never prel oad core.
IntSrc val ues:
Interrupts disabl ed.
Interrupt on Overflow.
Interrupt on Index.
Interrupt on Index or Overflow.
Lat chSrc val ues:
Latch on read.
Latch A on A Index.
Latch B on B I ndex.
Latch B on A Overfl ow.
I ndxSrc val ues:
Har dwar e or software index.
Software index only.
I ndxPol val ues:
I ndex input is active high.
Index input is active |ow
Cl kSrc val ues:
Count er node.
Ti mer node.
Ext ender node.
Cl kPol val ues:
Count er/ Ext ender clock is active high.
Count er/ Ext ender clock is active |ow.
Ti mer counts up.
Ti mer counts down.
Cl kEnab val ues:
Cl ock al ways enabl ed.
Clock is enabl ed by index.
Cl kMul t val ues:
4x clock multiplier.
2x clock multiplier.
1x clock multiplier.
Bit Field positions in COUNTER SETUP wor d:
Prel oad trigger.
I ndex source.
I ndex polarity.
Cl ock source.
Cl ock polarity/count direction.
Clock multiplier.
Cl ock enabl e.
Count er channel nunbers:

Sensoray Instruction Manual

Model 626 Driver for Windows

#define CNTR_OA
#define CNTR_1A
#define CNTR_2A
#define CNTR_OB
#define CNTR_1B
#define CNTR 2B

Il Count er OA.
Il Counter 1A
Il Counter 2A.
Il Count er OB.
Il Counter 1B.
/1 Counter 2B.

a b~ wNPEF O

/1 In addition to the constants |isted above, the follow ng code macros are useful.
/1 Counter overflow index event flag bit masks for S626_Counter CapStatus():

#defi ne | NDXMASK(C) (1<<(((Q>2)?2((O*2-1):((O*2+ 4)))
#defi ne OVERMASK(Q) (1<<(((Q >2)Y?2((OO *2+5): ((CQ*2+10)))

4.7.2 Example: Periodic Interrupt Generator

This example shows how to program a counter to generate interrupts at periodic intervals.

A function, GenPer i odi cl nt s() , encapsulates the complexities of configuration programming and provides a standardized
method that works with any counter. This function will configure any of the six counter channels to generate interrupts at
intervals specified by theni | | i seconds argument.

The target counter is configured as a down-counting timer. Clock enabling is controlled by the index, which in turnis controlled
exclusively by software; the hardware index input is disabled. When the counter counts down to zero, it automatically reloads
from the preload register and generates an interrupt service request via the counter overflow event capture.

TELELTEEEL i i bbb i rrrrd
/'l Configure a counter to generate periodic interrupts.
TELELTEEEL i i bbb i rrrrd

VO D GenPeri odiclnts(HBD hbd, WORD chan, DWORD nilliseconds)

{

/1l Set counter operating node.
S626_Count er MbdeSet (hbd, chan,

(LOADSRC_I NDX << BF_LOADSRC) | /1 1 ndex causes prel oad.

(I NDXSRC_SOFT << BF_I NDXSRC) | /1 Hardware index disabl ed.

(CLKSRC TIMER << BF_CLKSRC) | /'l Operating node is Tinmer.

(CNTDIR DOMWN << BF_CLKPOL) | /1 Count direction is Down.

(CLKMULT_1X << BF_CLKMULT) | /1 Clock multiplier is 1x.

(CLKENAB_| NDEX << BF_CLKENAB)); /1 Counting is initially disabled.
/1 Initialize PreLoad value to match the specified tine interval. Since the counter
/1 clock is fixed at 2 MHz, this is conputed by nultiplying mlliseconds by 2,000.
S626_Count er Prel oad(hbd, chan, mlliseconds * 2000);
/'l Generate a soft index to force transfer of PreLoad value into counter core.
S626_Count er Sof t | ndex(hbd, chan);
/'l Enabl e transfer of PreLoad value to counter in response to overflow. This
/1 will cause the initial counts to reload every tine the counts reach zero.
S626_Count er LoadTri gSet (hbd, chan, LOADSRC OVER);
/'l Enable the counter to generate interrupt requests upon captured overfl ow.
S626_Count er I nt Sour ceSet (hbd, chan, | NTSRC _OVER);
/1l Enable the tiner. The first interrupt will occur after the specified
/1 tinme interval el apses.
S626_Count er Enabl eSet (hbd, chan, CLKENAB_ALWAYS);

}

This code shows how to use GenPer i odi cl nt s() to activate periodic interrupts:

Sensoray Instruction Manual Model 626 Driver for Windows

/1 Configure board 0, counter OA to generate an interrupt every 50 mlliseconds.
GenPeriodiclnts(0, CNTR OA, 50);

4.7.3 Example: Encoder Interface

This example shows how to program a counter to work with an incremental encoder.

Incremental encoders produce two clock signals that have a 90 degree phase difference (i.e., quadrature-encoded), from which
the counter core derives its count clock and direction control signals. Often, encoder applications also utilize an index signal that
is used for registering a reference position.

In this example, the counter clock inputsis driven by the encoder’s quadrature clock. The encoder index input is programmed to
reset the counter to zero and source an interrupt request when the index switchesto its active state. The counter is configured so
that encoder counts may be read by the application at any time.

FEEELLEELLL i bbb i i i i bbb rrrrrr
/1 Configure board 0, counter 2A as a quadrature counter. An active Index will reset

/1l the counter core to zero and generate an interrupt request.

TEEELLIELLL i b i i bbb rrrrrr

/1l Set counter operating node.
S626_Count er MbdeSet (0, CNTR_2A,

(LOADSRC I NDX << BF_LOADSRC) | /'l 1 ndex causes prel oad.

(I NDXSRC_HARD << BF_INDXSRC) | /'l Hardware index is enabl ed.

(1 NDXPOL_PCS << BF_I NDXPQL) | /1 Active high index.

(CLKSRC_COUNTER << BF_CLKSRC) | /'l Operating node is Counter.

(CLKPOL_PGCS << BF_CLKPOL) | /1 Active high clock.

(CLKMULT_4X << BF_CLKMULT) | /1 Clock multiplier is 4x.

(CLKENAB_ALWAYS << BF_CLKENAB)); /1 Counting is always enabl ed.
/1 Initialize preload value to zero so that the counter core will be set

/1l to zero upon the occurance of an |ndex.
S626_Count er Prel oad(0, CNTR_2A, 0);

/1 Enable | atching of accumul ated counts on demand. This assunes that
/1l there is no conflict with the |latch source used by paired counter 2B.
S626_Count er Lat chSourceSet (0, CNTR_2A, LATCHSRC AB_READ);

/1 Enable the counter to generate interrupt requests upon index.
S626_Count er I nt Sour ceSet (0, CNTR_2A, | NTSRC_I NDX);

As shown in below, the accumulated encoder counts may be read at any time. To ensure that a legitimate counts value will be
displayed, at least one index must occur before executing this statement.

/'l Read and di splay current encoder position.
printf("Encoder position = %\ n", S626_CounterReadLatch(0, CNTR 2A));

4.7.4 Example: Simple Event Counter

This example shows how to program a counter to count pulses from a single-phase clock source, such as a tachometer.

In this example, the counter clock input is driven by an external, single-phase signal source and the count direction is fixed so
that the counter core increments once per input pulse. The counter’s hardware index input is disabled so that the index is
exclusively software-driven. The counter is configured so that event counts may be read by the application at any time.

FEEELTIELLL bbb bbb rrrrrr
/1 Configure board 0, counter 2A as an event counter.
PEEELTEELLL i i i i i bbb rrrrrr

Sensoray Instruction Manual Model 626 Driver for Windows

/1l Set counter operating node.
S626_Count er MbdeSet (0, CNTR_2A,
LOADSRC | NDX << BF_LOADSRC)
I NDXSRC_SOFT << BF_I NDXSRC)
CLKSRC_COUNTER << BF_CLKSRC)
CLKPOL_PCS << BF_CLKPOL)
CLKMULT_1X << BF_CLKMULT)
CLKENAB_ALVAYS << BF_CLKENAB)

| /1 Preload in response to index.
| /1 Hardware index disabl ed.

| /'l Operating node is Counter.

| /1 Active high clock.

| /1 Clock multiplier is 1x.

); /1 Counting is always enabl ed.

NN~~~

/1 Initialize preload value to zero so that the counter core will be set
/'l to zero upon the occurance of a software-induced index.
S626_Count er Prel oad(0, CNTR_2A, 0);

/1 Enable |l atching of accumul ated counts on demand. This assunes that
/1l there is no conflict with the latch source used by paired counter 2B.
S626_Count er Lat chSourceSet (0, CNTR_2A, LATCHSRC AB_READ);

/|l Generate a soft index to initialize the counts to zero.
S626_Count er Sof t | ndex(hbd, CNTR 2A);

The accumulated event count may be read by executing the following statement:

/1 Read and display the accunul ated event counts.
printf("Events counted = %\ n", S626_CounterReadLatch(0, CNTR 2A));

Counts may be reset to zero by executing the following statement:

4.7

/'l Reset the accunul ated counts.
S626_Count er Sof t | ndex(hbd, CNTR 2A);

.5 Example: Pulse Width M easur ement

This example shows how to use a counter to measure pulse width. In this example, the counter is configured to measure positive
pulses, although it is a simple matter to reconfigure it to measure negative pulses.

The counter is configured as atimer with a hardware-gated clock. The counter’s hardware index input, which connects to the
signal that isto be measured, gates the counter’s clock so that counting is enabled only during input pulses. In addition to the
level-sensitive clock gating function, theindex input also performs the following edge-sensitive functionsin response to an input
pulse leading edge:

Vet

R &R &

Transfers the previously acquired pulse width data to the latch register.
Preloads the counter core with zeros to begin the new acquisition.
Captures a counter Index Event.

Generates an interrupt request.

FILEELIEELL bbb rrrrrrrrrgd
/1 Measure positive pulse width using board 0, counter 2A.
FIEEELIELLL bbb rrrrrrirrnd

/1l Set counter operating node.
S626_Count er MbdeSet (0, CNTR_2A,
LOADSRC | NDX << BF_LOADSRC
I NDXSRC _HARD << BF_I NDXSRC
| NDXPOL_POS << BF_I NDXPOL

) /1 Preload in response to index.

)

)
CLKSRC TIMER << BF_CLKSRC)

)

)

)

I
| /'l Pul se signal drives index.
| /'l Active high pul se signal.
| /'l Operating node is Tinmer.
CNTDI R_UP << BF_CLKPOL | /1 Count direction is Up.
CLKMULT_1X << BF_CLKMULT) |
)

CLKENAB_| NDEX << BF_CLKENAB

/1 Clock multiplier is 1x.
; /1 Counting is gated by index.

N~~~ A~~~

Sensoray Instruction Manual Model 626 Driver for Windows

/1 Initialize preload value to zero so that the counter core will be set
/1l to zero upon the occurance of a hardware index.
S626_Count er Prel oad(0, CNTR_2A, 0);

/1 Enable | atching of accunul ated counts in response to an index. This assunes that
/1l there is no conflict with the latch source used by paired counter 2B.
S626_Count er Lat chSourceSet (0, CNTR_2A, LATCHSRC A | NDXA);

After configuring the counter, the application waits for an index event. For the sake of clarity, the index event is detected by
means of a polling loop, whereas in areal application this would more likely be implemented with interrupts. When an index
event is captured, the acquired pulse width datais fetched from the counter’ slatch register. Data should be discarded for the first
index event because valid datais not yet available from a previous acquisition. The following code shows the polling loop.

/'l lgnore the data value fromthe first event.
bool IsFirst = true;

for (5 ;)

{
/1 Wait for a captured index event on counter 2A, then clear its capture flag.
while (!(S626_CounterCapStatus(0) & I NDXMASK(CNTR 2A)));
S626_Count er CapFl agsReset (0, CNTR 2A);

/1 Read and display neasured pulse width. Since tiner is clocked by a 2 MHz source,
/1 accumul ated count is divided by 2 to convert pulse width to microseconds units.
if ('IsFirst)

printf("Pulse width (us) = %\ n", S626_CounterReadLatch(0, CNTR 2A) >> 1);

IsFirst = fal se;

4.7.6 Example: Frequency Counter

This example shows how to use a pair of counters to measure frequency.

A function, Cr eat eFr eqCount er (), isimplemented to encapsulate the complexities of configuration programming and to
provide a standardized method that works with any counter pair. This function will configure any of the three counter channel
pairs to measure frequency.

CounterA serves as an acquisition gate generator. The gate time is determined by the value in the counterA preload register. The
end of the gate interval is denoted by an overflow on counterA.

CounterB’s clock input is connected to the external frequency source; this counter continuously counts pulses from the
frequency source. Upon overflow of counterA, counterB transfers its counts to the latch register and resets to zero to begin the
next acquisition.

TIEEELIELLL bbb rrrrrrrrrrgl
/1 Configure an A/B counter pair to nmeasure frequency.

/1 The counter pair is specified by the A nmenmber of the pair.

/1 Acquisition gate tinme is specified in mlliseconds.

FIEEELIEELL bbb rrrrrrrrrgd

VO D Creat eFreqCount er (HBD hbd, WORD CounterA, WORD GateTinme)
{
/1 Set operating node for counterA
S626_Count er ModeSet (hbd, CounterA,
LOADSRC OVER << BF_LOADSRC) |
| NDXSRC_SOFT << BF_I NDXSRC) |
CLKSRC TI MER << BF_CLKSRC) | /'l Operating node is Tinmer.
CNTDI R_ DOAN << BF_CLKPOL) | /1 Count direction is Down.
CLKMULT_1X << BF_CLKMULT) | /1 Clock multiplier is 1x.
CLKENAB_ | NDEX << BF_CLKENAB)); /1 Counting is initially disabled.

/1 Prel oad upon overfl ow.
/1 Disabl e hardware index.

N~~~

Sensoray Instruction Manual Model 626 Driver for Windows

/1 Set counterA core and preload value to the desired gate tine. Since the counter
/1 clock is fixed at 2 MHz, this is conputed by nultiplying mlliseconds by 2,000.
S626_Count er Prel oad(hbd, CounterA, GateTine * 2000);

S626_Count er Sof t | ndex(hbd, CounterA);

/'l Enabl e preload of counterA in response to overflow. This causes the tinmer to
/'l restart automatically when its counts reach zero.
S626_Count er LoadTri gSet (hbd, CounterA, LOADSRC OVER);

/1 Set operating node for counterB.

S626_Count er ModeSet (0, CounterA + 3,
LOADSRCB_OVERA << BF_LOADSRC)
I NDXSRC_SOFT << BF_I NDXSRC)
CLKSRC_COUNTER << BF_CLKSRC)
CLKPOL_PCS << BF_CLKPCOL)
CLKMULT_1X << BF_CLKMULT)
CLKENAB_ALVAYS << BF_CLKENAB)

| /'l Preload zeros upon |eading gate edge.
| /'l Hardware index is disabled.

| /'l Operating node is Counter.

| /1 Clock is active high.

| /1 Clock multiplier is 1x.

); /1 Clock is always enabl ed.

N~~~

/1 Initialize counterB s preload value to zero so that counterB core will be set
/1 to zero in response to trailing gate edge (counter A overflow).
S626_Count er Prel oad(0, CounterA + 3, 0);

/'l Enable latching of counterB s acquired frequency data in response to trailing
/1 gate edge (counterA overflow).
S626_Count er Lat chSourceSet (0, CounterA + 3, LATCHSRC B OVERA);

/'l Enabl e the acquisition gate generator.
S626_Count er Enabl eSet (hbd, Counter A, CLKENAB_ALWAYS);

After configuring the counter pair, the application waits for an overflow event on counter A. For the sake of clarity, the overflow
event is detected by means of a polling loop, whereas in areal application thiswould more likely be implemented with interrupts
(see Section 4.11.2 for an implementation that uses interrupts).

When a counter A overflow event is captured, the acquired frequency datais fetched from the latch register. Data should be
discarded for the first overflow event because data is not yet available from a previous acquisition. The following code shows
the counter initialization and polling loop.

#define COUNTER CNTR OA /1 Counter A (and inplicitly, B) channel to use.

/'l Configure counter A/B pair as a frequency counter, gate tine = 1 second.
Creat eFreqCounter(0, COUNTER, 1000);

/'l lgnore the data value fromthe first gate period.
bool IsFirst = true;

for (5 ;)

{
/1 Wait for a captured overflow event on counter A then clear its capture flag.
while (!(S626_CounterCapStatus(0) & OVERVASK(COUNTER)));
S626_Count er CapFl agsReset (0, COUNTER);

/'l Read and di splay neasured frequency from counter B.
if ('IsFirst)
printf("Frequency (Hz) = 98d.\r", S626_CounterReadLatch(0, COUNTER + 3));

IsFirst = fal se;

Sensoray Instruction Manual Model 626 Driver for Windows

4.8 Watchdog Timer Functions

4.8.1 S626 WatchdogPeriodSet()

Function:

Prototype:

Returns:

Notes:

Example:

Programs the watchdog timer interval.

VO D S626_Wat chdogPeri odSet (HBD hbd, WORD interval);

Parameter Type Description
hbd HBD Board Handle.
i nterval WORD Enumerated watchdog time interval. Takes one of the following values:
0 = 0. 125 seconds,
1 = 0.5 seconds,
2 = 1. 0 second,
3 = 10 seconds.
None.

This function establishes the watchdog timer interval. The watchdog timer interval is defined as the maximum
elapsed time between calls to S626_WatchdogReset() that ensures no watchdog timeouts.

When the watchdog timer is enabled, the application must call S626_Wat chdogReset () at aminimum rate
determined by the watchdog interval in order to prevent a watchdog timeout.

TIEEELTIEEL bbb i rrrd
/1 Set the watchdog tiner interval on board nunber O to 10 seconds.
TELEELTIELL L i bbb i rirrrrd
#define WD_| NTERVAL_SEC 10 3

S626_Wat chdogPeri odSet (0, WD _| NTERVAL_SEC 10);

4.8.2 S626 WatchdogPeriodGet()

Function:

Prototype:

Returns:

Example:

Returns the programmed watchdog timer interval.

WORD S626_Wat chdogPeri odGet (HBD hbd);

Parameter Type Description
hbd HBD Board Handle.

WORD containing one of the following enumerated watchdog interval values:

0 = 0. 125 seconds,
1 = 0. 5 seconds,
2 = 1.0 second,

3 = 10 seconds.

TEEEELTEELL e bbb rrrrrr
/1 Fetch and display the watchdog interval from board nunber O.
TELEELIEELL i bbb i rrrrrr

printf("Board 0 watchdog interval =");
switch (S626_Wat chdogPeriodGet(0))

{
case 0: printf("0.125 seconds.\n");

Sensoray Instruction Manual Model 626 Driver for Windows

case 1: printf("0.5 seconds.\n");

case 2: printf("1 second.\n");
case 3: printf("10 seconds.\n");
}

4.8.3 S626 WatchdogEnableSet()

Function:

Prototype:

Returns:

Notes:

Example:

Enables/disables the watchdog timer.

VO D S626_Wat chdogEnabl eSet (HBD hbd, WORD enable);

Parameter Type Description
hbd HBD Board Handle.

enabl e WORD Specifies whether watchdog timer is to be enabled or disabled. Set to zero to
disable the timer, or to any non-zero value to enable the timer.

None.

This function controls the enabling of the watchdog timer. Prior to enabling the watchdog timer, the watchdog
time interval should be programmed by calling S626_\Wat chdogPer i odSet () .

TELEELTEELL i bbb rrrrrr
/1 On board nunber 0, set the watchdog timer interval to 1.0 seconds and
/1 then enable the watchdog tiner.

R Ry
#define WD_INTERVAL_SEC 1 2

S626_Wat chdogPeri odSet (0, WD_| NTERVAL_SEC 1); /1 Set WD interval to 1 sec.
S626_Wat chdogEnabl eSet (0, true); /1 Enable the WD timer.

4.8.4 S626 WatchdogEnableGet()

Function:

Prototype:

Returns:

Example:

Returns the state of the watchdog timer enable.
WORD S626_Wat chdogEnabl eGet (HBD hbd) ;

Parameter Type Description
hbd HBD Board Handle.

WORD value indicating whether the watchdog timer is enabled. The returned valueiszero if the watchdog timer is
disabled, or non-zero if the timer is enabled.

TELEELTEELL i bbb rrrrrr
/1 Display a nessage indicating whether the board 0 watchdog tinmer is enabled.
TELEELTEELE i bbb bbb rrrrrry

printf(S626_Wat chdogEnabl eGet () ? "Watchdog enabl ed\n" : "WAtchdog di sabl ed\n");

Sensoray Instruction Manual Model 626 Driver for Windows

485 S626 WatchdogReset()

Function:

Prototype:

Returns:

Notes:

Example:

Resets the watchdog timer.

VO D S626_Wat chdogReset (HBD hbd);

Parameter Type Description
hbd HBD Board Handle.
None.

After the watchdog interval has been programmed by S626_\Wat chdogPer i odSet () and the watchdog timer
has been enabled by S626_Wat chdogEnabl eSet (), this function must be called repeatedly to prevent the
watchdog timer from timing out. To guarantee that the watchdog timer will not timeout, the maximum elapsed
time between any two callsto S626_\Wat chdogReset () must not exceed the time interval that was last
programmed by S626_\Wat chdogPer i odSet () .

TELEELTEEEE i bbb rrrrrr
/1 On board nunmber 2, reset the watchdog tiner to prevent a watchdog tinmeout.

[EEEEEEEEEr e bbb r ey

S626_Wat chdogReset (2); /1 "Tag" (reset) the watchdog tiner.

4.8.6 S626 WatchdogTimeout()

Function:

Prototype:

Returns:

Notes:

Example:

Returns the watchdog timeout status.

WORD S626_Wat chdogTi meout (HBD hbd) ;

Parameter Type Description
hbd HBD Board Handle.

WORD indicating whether the watchdog timer has timed out. The returned valueis zero if no timeout has
occurred, or anon-zero value if atimeout has transpired.

This function is useful only if the watchdog timer output has not been routed to the PCI bus hardware reset signal.
If the watchdog output is routed to the PCI reset signal, a watchdog timeout will generate a system-wide PCI bus
reset, thereby returning the Model 626 watchdog timer to its default, disabled state and clearing the watchdog
timeout status indicator.

TELEELIELLL i bbb rrrrrry
/1 Display a nessage indicating whether the board 0 watchdog has tined out.
TELEELIELLL i bbb rrrrrry

printf(S626_Wat chdogTi neout () ? "Watchdog timeout\n" : "No watchdog tineout\n");

Sensoray Instruction Manual Model 626 Driver for Windows

4.9 Battery Functions

49.1 S626 BackupEnableSet()

Function: Enables/disables battery backup of the counter circuits.

Prototype: VO D S626_BackupEnabl eSet (HBD hbd, WORD enable);

Parameter Type Description
hbd HBD Board Handle.
enabl e WORD Indicates whether battery backup is to be enabled or disabled. Set to zero to

disable battery backup, or to any non-zero value to enable battery backup.

Returns: None.

Notes: An optional, external battery must be connected to the board to supply backup power. Refer to the Model 626
hardware manual for details.

Example: TELEEETEELE i bbb rrrrrr
/1l Enable battery backup of the counter circuits on board nunber O.
TELEELIEELL i bbb i rrrrrr

S626_BackupEnabl eSet (0, true);

4.9.2 S626 BackupEnableGet()

Function: Returns the state of the enable for battery backup.

Prototype: WORD S626_BackupEnabl eGet (HBD hbd);

Parameter Type Description
hbd HBD Board Handle.

Returns: WORD value indicating whether battery backup is enabled for the counter circuitry. Thereturn valueis zero if
battery backup is disabled, or non-zero if battery backup is enabled.

Notes: An optional, external battery must be connected to the board to supply backup power. Refer to the Model 626
hardware manual for details.

Example: PELEELTEELE i bbb rrrrrr
/1 Display the state of the battery backup enabl e on board number O.
TILEELTEELE i bbb rrrrrry

printf(S626_BackupEnabl eGet(O) ? "Backup enabled.\n" : "Backup disabled.\n");

Sensoray Instruction Manual Model 626 Driver for Windows

49.3 S626 ChargeEnableSet()

Function:

Prototype:

Returns:

Notes:

Example:

Enables/disables battery charging.
VO D S626_Char geEnabl eSet (HBD hbd, WORD enable);

Parameter Type Description
hbd HBD Board Handle.

enabl e WORD Indicates whether backup battery charging isto be enabled or disabled. Set to zero
to disable battery charging, or to any non-zero value to enable battery charging.

None.

This function enables or disables trickle charging of a battery that supplies power to the counter circuits during a
system power failure.

An optional, external battery must be connected to the board. Refer to the Model 626 hardware manual for details.
FEEELEEEE i r bbb bbb rrrrrrrrnd

/1 Enabl e charging of the backup battery connected to board nunber 3.

FEEELEEEEEEr i b r b i bbb bbb rrrrrrrrnd

S626_Char geEnabl eSet (3, true);

49.4 S626 ChargeEnableGet()

Function:

Prototype:

Returns:

Notes:

Example:

Returns the state of the enable for the battery charger.

WORD S626_Char geEnabl eGet (HBD hbd);

Parameter Type Description
hbd HBD Board Handle.

WORD value indicating whether battery charging is enabled for the backup battery. The return value is zero if
battery charging is disabled, or non-zero if battery charging is enabled.

An optional, external battery must be connected to the board. Refer to the Model 626 hardware manual for details.
TIEEEETELLL bbb rrrrrr
/1 Display a nessage indicating whether battery charging is enabled on board 3.
TELEELTEELLE i bbb rrrrrr

printf(S626_ChargeEnabl eGet(3) ? "Charging enabled.\n" : "Charging disabled.\n");

Sensoray Instruction Manual Model 626 Driver for Windows

4.10 Interrupt Functions

4.10.1 S626 |nterruptEnable()

Function:

Prototype:

Returns:

Notes:

Example:

Enables/disables the board' s master hardware interrupt.

VO D S626_I nterrupt Enabl e(HBD hbd, WORD enable);

Parameter Type Description

hbd HBD Board handle.

enabl e WORD Indicates whether the master hardware interrupt is to be enabled or disabled.
Set to zero to disable the interrupt, or to any non-zero value to enable the
interrupt.

None.

The Model 626 driver implements hardware interrupt processing by means of a secondary thread, referred to asthe
interrupt thread, which executues concurrently with the main driver thread. Theinterrupt thread is created when a
board is declared to the driver by calling S626_COpenBoar d() with anon-zero cal | back address. A separate
interrupt thread is launched for each board that is declared to the driver.

When launched, the interrupt thread performs various initialization functions and then enters a dormant state. The
thread remains in the dormant state while it waits for a hardware interrupt. When an interrupt occurs, the thread
awakens, services the interrupt, and then returns to the dormant state to wait for the next interrupt. The interrupt
thread is terminated when the board becomes unregistered.

Two services are provided by the interrupt thread in response to a hardware interrupt:

1. The master hardware interrupt enable on the Model 626 board is masked (disabled). This prevents pending
interrupt requests from causing nested interrupts while an interrupt serviceisin progress.

2. Anapplication interrupt service routine (ISR) callback function isinvoked so that application-specific
interrupt handling can be performed. Note that the | SR callback function executes on the interrupt thread, not
on the main driver thread.

At aminimum, the application’s ISR callback function must determine which onboard resources caused the
interrupt, negate the pending interrupt requests for those resources, and then unmask the master board interrupt by
calling S626_| nt er r upt Enabl e() . In most applications, a separate callback function is provided for each
board in order to quickly resolve the resources that need servicing.

The master board interrupt is masked in response to PCI bus resets or execution of the S626__COpenBoar d()
function. Applications that employ Model 626 interrupts must call S626_1 nt er r upt Enabl e() to unmask
the master interrupt after either of these events has occurred. Also, because the master interrupt is automatically
disabled by the interrupt thread, S626 | nt er r upt Enabl e() isusually invoked by the application at the end
of the ISR callback function.

S626_1 nt err upt Enabl e() may be called to temporarily disable interrupts during acritical segment, which is
defined here as any program sequence that must not be interrupted. Thisis often required in applications that share
memory or other hardware resources among multiple threads.

See the examples in Section 4.11.

Sensoray Instruction Manual Model 626 Driver for Windows

4.10.2 S626 InterruptStatus()

Function:

Prototype:

Returns:

Notes:

Example:

Returns the interrupt status of al counter and DIO (digital 1/0) channels.

VO D S626_I nterrupt Status(HBD hbd, WORD *status);

Parameter Type Description
hbd HBD Board Handle.
st at us WORD* Address of an array of WORDs that will receive the interrupt status.

The st at us argument is the address of an array of four WORD values that will be populated with interrupt status
information; this array will receive interrupt status for all interrupt sources on the specified board.

Table 10 shows the organization of the status information that is loaded into the target WORD array by this
function. Thefirst three WORD elements of the array receive the interrupt status of the DIO channels, while the
fourth element receives the interrupt status of the counter channels.

Table 10: Organization of WORD array populated by S626_|nterruptStatus().

Array Bit Position

Index | 15| 14| 13| 1211|100/ 9| 8| 7|6 |5|a|3|2|1]0

0 DIO | DIO | DIO | DIO | DIO | DIO | DIO | DIO | DIO | DIO | DIO | DIO | DIO | DIO | DIO | DIO
15 | 14 | 13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

1 DIO | DIO | DIO | DIO | DIO | DIO | DIO | DIO | DIO | DIO | DIO | DIO | DIO | DIO | DIO | DIO
31 | 30| 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16

2 DIO | DIO | DIO | DIO | DIO | DIO | DIO | DIO
0 0 0 0 0 0 0 0 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32

3 OVR|OVR|OVR|OVR|OVR|OVR| IDX | IDX | IDX | IDX | IDX | IDX
2B [2A | 1B | 1A | OB |OA | 2B | 2A | 1B | 1A | OB | OA

The following abbreviations are used in Table 10:

Abbreviation: istheinterrupt request statusfor:

DIO DIO channel xx captured an edge.

XX

OVR Counter xx captured an overflow.
XX

IDX Counter xx captured an index.
XX

A logic onein any bit position indicates that the associated resourceis requesting interrupt service. For example, a
logic onein bit number 12 of the array’s fourth WORD element indicates that counter 1A has overflowed and is
reguesting interrupt service.

None.

This function is typically used by application interrupt callback functions to quickly determine which onboard
resources are requesting interrupt service.

See the examples in Section 4.11.

Sensoray Instruction Manual Model 626 Driver for Windows

4.11 Interrupt Programming Examples

4.11.1 Example: DIO Interrupts

This example is a simple application that demonstrates how to use DIO interrupts.

This sample application consists of two functions that execute on two separate threads: a primary application function and an
interrupt handler. The interrupt handler counts interrupts occuring on DIO channels 0 through 15. Once per second, the main
function displays the accumulated interrupt counts and resets the counts to zero.

FIEEELTEEEL i i i rrrrrrirrgd
/1 Count the interrupts occurring on board 0, DI O channels 0-15.
FIEEELTEEEL i i i rrrrrrirrgg

#i ncl ude <wi ndows. h>
#i ncl ude <stdio. h>
#i ncl ude "W n626. h"

VO D Appl SR() ; /1 Function prototype.

/1 Array of zeros for fast resetting of interrupt counters.
const DWORD zeros[] ={ 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 };

/'l Interrupt counters.
DWORD | nt Counts[16] = { 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 };

/'l Synchroni zation structure for thread-safe execution.
CRI TI CAL_SECTION Critical Section;

[EEEEEEEEE bbb rrrrrrrrrrg
/1 APPLI CATI ON NMAI N FUNCTI ON.

VO D nmai n()

{
DWORD count s[16] ; /'l Cached copy of interrupt counts.

/1 Initialize the thread synchroni zation structure.
InitializeCritical Section(&Critical Section);

/1 Link to S626.DLL.
S626_DLLOpen();

/'l Declare board to driver and |l aunch interrupt thread.
S626_QOpenBoard(0, 0, Appl SR, THREAD PRI ORI TY_ABOVE_NORMAL);
if (S626_GetErrors(0))

{
printf("ERROR probl em opening board.\n");
S626_DLLC ose(); /1 Unlink from S626.DLL.
return;

}

/1 Reset all D O interrupt counters to zero.
mencpy(| ntCounts, zeros, sizeof(zeros));

/1 Enabl e event capturing and interrupts on DI O channels 0-15.
S626_DI CCapEnabl eSet (0, 0, OxFFFF, true);
S626_DI O nt Enabl eSet (0, 0, OxFFFF);

/'l Enabl e board naster interrupt.
S626_| nt errupt Enabl e(0, true);

/'l Repeat for 10 seconds ...

Sensoray Instruction Manual Model 626 Driver for Windows

for (int seconds = 0; seconds < 10; seconds++)

{
/1 Suspend main thread for one second.
Sl eep(1000);
/1 Copy, and then reset the interrupt counts. This is a critical section because
/1 interrupt counters are shared by both the nmain thread and the interrupt thread.
EnterCritical Section(&Critical Section); /1 * Start thread-safe section --------
mencpy(counts, |ntCounts, sizeof(counts)); // * Cache a copy of counters.
nmencpy(| ntCounts, zeros, sizeof(zeros)); /1 * Reset counters to zero.
LeaveCritical Section(&Critical Section); /1 * End thread-safe section ----------
/1 Display cached interrupt counts.
printf("\f**** | NTERRUPT COUNTS ****\n");
for (int i =0; i <16; i++)
printf("D O %d counts = 98d", i, counts[i]);
}

/1 Unlink from S626. DLL.
S626_DLLC ose();

/'l Delete the critical section.
Del eteCritical Section(&Critical Section);

}

[EEEEEEEEE bbb rrrrrrrrrrg
/11 SR CALLBACK FUNCTI ON.

VO D Appl SR()

{
WORD | nt St at us[4] ; /1l Array that receives interrupt status.
/1 Cache a copy of DI O channel 0-15 interrupt request (lIRQ status.
S626_InterruptStatus(0, IntStatus); /'l Fetch IRQ status for all sources.
regi ster WORD status = IntStatus[O0]; /1 Cache DI O 0-15 | RQ status.
/1 Tally DIO 0-15 interrupts.
regi ster DAWORD *pCounts = I nt Counts; /1 Init pointer to interrupt counter.
EnterCritical Section(&Critical Section); /1 * Start thread-safe section -----------
for (register WORD mask = 1; mask != 0; pCounts++)
{ I *
if (status & mask) /1 * 1f DIOis requesting service ...
(*pCounts) ++; Ir* increnent DIO s interrupt counter.
mask += mask; /1 * Bunp mask.
} I *
LeaveCritical Section(&Critical Section); /1 * End thread-safe section -------------
/1 Negate all processed DIO interrupt requests.
S626_DI CCapReset (0, 0, status);
/'l Unnmask board’s master interrupt enable.
S626_| nt errupt Enabl e(0, true);
}

4.11.2 Example: Counter Interrupts

This example is a simple application that demonstrates how to use counter interrupts.

The application consists of two functions that execute on separate threads: a primary application function and an interrupt
handler. The main function initializes the frequency counter, consisting of counter pair 0A/0B, and then sleeps for ten seconds.
While the main thread sleeps, the interrupt handler fetches and displays acquired frequency data once per second.

Sensoray Instruction Manual Model 626 Driver for Windows

FIEEELIEEEL i i i bbb rrrrrrirrgg
/1 Sanple application: interrupt-driven frequency counter.
FIEEELTEEEL i i i rrrrrrirrgg

#i ncl ude <wi ndows. h>
#i ncl ude <stdio. h>
#i ncl ude "W n626. h"

#define COUNTER CNTR OA /1 Counter A (and inplicitly, B) channel to use.

/'l Function prototypes.
VO D Creat eFreqCount er (HBD hbd, WORD CounterA, WORD GateTinme);
VO D Appl SR();

[EEEEEEEEE bbb rrrrrrrrrrg
/1 APPLI CATI ON MAI N FUNCTI ON.

VO D nmai n()

{
/1 Link to S626.DLL.
S626_DLLOpen();

/1 Declare Model 626 board to driver and | aunch the interrupt thread.
S626_OpenBoard(0, 0, Appl SR, THREAD PRI ORI TY_ABOVE NORMAL);
if (S626_GetErrors(0))
printf("ERROR probl em opening board.\n");
el se
{
/'l Configure counter A/B pair as a frequency counter, gate tine = 1 second.
/1 Note: the CreateFreqCounter() function is shown in Section 4.7.6 on page 42.
Creat eFreqCounter(0, COUNTER, 1000);

/1 Enable interrupts in response to captured counter A overflows.
S626_Count er I nt Sour ceSet (0, COUNTER, | NTSRC OVER);

/'l Enabl e board’ s naster interrupt.
S626_| nt errupt Enabl e(0, true);

/'l Sleep for ten seconds.
Sl eep(10000);
}

/1 Disconnect from S626. DLL.
S626_DLLC ose();
}

TEEEELIELL e bbb rrrrrr
/1 1 SR CALLBACK FUNCTI ON. Since counter OA is the only enabled interrupt
/'l source, there is no need to check for other interrupt requestors.

VO D Appl SR()

{
/'l Seconds counter.
static WORD secs = 0;

/1 Clear counter A overflow capture flag to negate the interrupt request.
S626_Count er CapFl agsReset (0, COUNTER);

/'l Read and display neasured frequency fromcounter B. Note that the first
/1 acquisition is not valid and should be ignored.
printf("9%d: Frequency (Hz) = ¥8d.\r", ++secs, S626_CounterReadLatch(0, COUNTER + 3));

Sensoray Instruction Manual Model 626 Driver for Windows

/'l Enabl e board’ s naster interrupt.
S626_| nt errupt Enabl e(0, true);

Sensoray Instruction Manual Model 626 Driver for Windows

