
Model 626 Driver
for Windows

September 12, 2002

Sensoray Co., Inc.
7313 SW Tech Center Dr., Tigard, Oregon 97223

voice: 503.684.8005, fax: 503.684.8164, e-mail: sales@sensoray.com
www.sensoray.com

Sensoray Instruction Manual i Model 626 Driver for Windows

Table of Contents

Introduction
Scope 1

Description 1
Block Diagram 1

Installation
Executable Software Components 2

Installation Procedure 2
Windows 98/2000/ME/XP 2

Windows NT4 3

SDK Components 3
Application SDK Components 3
Driver SDK Components 3

Fundamentals of Usage
Board Addressing 5

Board Handles 5
Physical Addressing 5

Thread-Safety 5

Channel Numbering 6

Programming Examples 6
Data Types 6

Required Function Calls 7
DLL Linking/Unlinking 7
Board Initialization 7

DLL Functions
Registration and Status Functions 8

S626_OpenBoard() 8
S626_CloseBoard() 10
S626_GetErrors() 11

S626_GetAddress() 12

Register Access Functions 12
S626_RegRead() 13
S626_RegWrite() 13

Analog Input Functions 14
S626_ResetADC() 14
S626_StartADC() 15
S626_WaitDoneADC() 15
S626_ReadADC() 15
A/D Programming Examples 16

Example: Scattered Acquisition 16
Example: Oversampling 16

Analog Output Functions 17
S626_WriteDAC() 17

Digital I/O (DIO) Functions 18
DIO Channel Groups 18
DIO Signal Polarity 18
S626_DIOModeSet() 18
S626_DIOModeGet() 19
S626_DIOWriteBankSet() 20
S626_DIOWriteBankGet() 20
S626_DIOReadBank() 21
S626_DIOEdgeSet() 22
S626_DIOEdgeGet() 22
S626_DIOCapEnableSet() 23
S626_DIOCapEnableGet() 24
S626_DIOCapStatus() 24
S626_DIOCapReset() 25
S626_DIOIntEnableSet() 26
S626_DIOIntEnableGet() 26

Sensoray Instruction Manual ii Model 626 Driver for Windows

Table of Contents

Counter Functions 27
Counter Operating Modes 27

Input Signal Names 27
Using DIOs as Counter Outputs 27

Mode Descriptions 27

Configuration Options 28
IntSrc 28

LatchSrc 29

LoadSrc 29

IndxSrc 30
IndxPol 30

ClkSrc 30

ClkPol 31

ClkMult 31

ClkEnab 31

S626_CounterModeSet() 32
S626_CounterModeGet() 32
S626_CounterEnableSet() 33
S626_CounterPreload() 33
S626_CounterLoadTrigSet() 34
S626_CounterLatchSourceSet() 35
S626_CounterReadLatch() 35
S626_CounterCapStatus() 36
S626_CounterCapFlagsReset() 36
S626_CounterSoftIndex() 37
S626_CounterIntSourceSet() 37

Counter Programming Examples 38
Constants Used in Examples 38
Example: Periodic Interrupt Generator 39
Example: Encoder Interface 40
Example: Simple Event Counter 40
Example: Pulse Width Measurement 41
Example: Frequency Counter 42

Watchdog Timer Functions 44
S626_WatchdogPeriodSet() 44
S626_WatchdogPeriodGet() 44
S626_WatchdogEnableSet() 45
S626_WatchdogEnableGet() 45
S626_WatchdogReset() 46
S626_WatchdogTimeout() 46

Battery Functions 47
S626_BackupEnableSet() 47
S626_BackupEnableGet() 47
S626_ChargeEnableSet() 48
S626_ChargeEnableGet() 48

Interrupt Functions 49
S626_InterruptEnable() 49
S626_InterruptStatus() 50

Interrupt Programming Examples 51
Example: DIO Interrupts 51
Example: Counter Interrupts 52

Sensoray Instruction Manual 1 Model 626 Driver for Windows

Chapter 1: Introduction

1.1 Scope
This document discusses the contents and use of the distribution media supplied with Sensoray Model 626 boards. Primary
focus is given to the installation and use of the API provided by the Windows driver for Model 626 boards, which is included on
the distribution media. The driver works with the following Windows versions: 98, NT4, ME, 2000 and XP.

1.2 Description
The Model 626 driver is a set of executable software modules that will interface one or more Sensoray Model 626 boards to a
Windows application program of your design. Application programs may be developed in any popular Windows development
environment, including Visual C++, Visual Basic, Delphi, etc.

Up to sixteen Sensoray Model 626 boards may be concurrently supported by the driver.

1.2.1 Block Diagram

The Model 626 driver consists of multiple software components that serve as an interface between the application program and
the operating system. Figure 1 illustrates the hierarchical functional relationship between these software components.

Figure 1: Block diagram of the software hierarchy.

Application

S626.DLL

KERNEL-MODE INTERFACE

OPERATING SYSTEM

HARDWARE
ACCESS

626 DRIVER

Sensoray Instruction Manual 2 Model 626 Driver for Windows

Chapter 2: Installation

2.1 Executable Software Components
The driver’s executable software components must be correctly installed on the target system to ensure proper functioning of the
Model 626 driver.

2.1.1 Installation Procedure

2.1.1.1 Windows 98/2000/ME/XP

 The components that are required, and their locations in your system, are shown in Table 1.

1. Remove the old driver. Perform the following steps only if you are installing the driver onto a computer that has an older
version of the driver. If you do not have an older version of the 626 driver, proceed to step 2.

a. Delete all instances of WINDRVR.SYS and S626.DLL from your system.
b. Delete the old INF file for the model 626. For Windows 98, the file will be in <WINROOT>\INF\OTHER, with a

filename containing “626.” For Windows 2000, the file will be in <WINROOT>\INF, with the filename OEMx.INF
(where x is a number); you must examine each such INF file with a text editor to determine which one applies to the
model 626.

c. Run the registry editor: use RegEdt32.exe if you are running Windows 2000, or RegEdit.exe if you are
running Windows 98. If you are running Windows 2000 and Windows prevents you from performing one of the
following registry changes, go to the Security menu and obtain authority to make the required registry key change.

d. Delete the 626 board’s registry key. This key has the following registry path:
(Windows 2000) HKEY_LOCAL_MACHINE|SYSTEM|CurrentControlSet|Enum|PCI.
(Windows 98) HKEY_LOCAL_MACHINE/Enum/PCI.
The key that is to be deleted begins as follows: VEN_1131&DEV_7146 ...

e. Delete the old kernel-mode driver key. This key has the following registry path:
(Windows 2000) HKEY_LOCAL_MACHINE|SYSTEM|CurrentControlSet|Services|WinDrvr.
(Windows 98) HKEY_LOCAL_MACHINE|SYSTEM|CurrentControlSet|Services|Class|WinDrvr.

2. Install the driver. Perform the following steps:
a. Locate all required software components in their appropriate directories as detailed in Section 2.1. Make sure there is

only one instance of SXDRV98.SYS in your file system; there should be no duplicates of this file in your file system.
b. Shut down the computer.

3. Install the hardware. Perform the following steps:
a. With system power turned off, install the model 626 board(s) into the backplane.
b. Apply system power and reboot.
c. The New Hardware Detected dialog box will display. Instruct the system to “search for the best driver,” then specify

the path to the SX.INF file that is included on the distribution media. The New Hardware Wizard should find the
file you specified and display its path in the dialog box. Instruct the Wizard to finish the installation.

d. Reboot the system.

Table 1: Required driver components for Windows 98/2000/ME/XP.

Filename Directory Function

S626.DLL SYSTEM Model 626 API

SXDRV98.SYS SYSTEM32\DRIVERS Kernel-mode driver

Sensoray Instruction Manual 3 Model 626 Driver for Windows

2.1.1.2 Windows NT4

 The components that are required, and their locations in your system, are shown in Table 2.

1. Install the driver. Perform the following steps:
a. Run the SETUPNT.BAT batch file. This will locate SXDRVNT.SYS in its required location (as shown above) and

modify the Windows registry accordingly.
b. Copy S626.DLL to the required target directory.
c. Shut down the computer.

2. Install the hardware. Perform the following steps:
a. With system power turned off, install the model 626 board(s) into the backplane.
b. Apply system power and reboot.

2.2 SDK Components

2.2.1 Application SDK Components

The Model 626 distribution media includes several source-code modules that are designed to help you to accelerate the
development of application programs that employ Model 626 boards:

WIN626.C Functions used for dynamically linking to and unlinking from S626.DLL. Compile this module and link
the resulting object file to all Windows-based C/C++ applications that access functions in S626.DLL.

WIN626.H Declarations for resources supplied by WIN626.C. Include this file in all Windows-based C/C++
application modules that access S626.DLL functions.

APP626.H Essential data types and manifest constants required by 626-based applications. Include this file in all
C/C++ application modules that access 626 boards.

WIN626.BAS Data types, constants, and function declarations required for Visual Basic applications. Include this file in
any Visual Basic project that accesses functions in S626.DLL.

2.2.2 Driver SDK Components

Besides providing modules for Windows-based application program development, the distribution media also includes several
platform-independent source-code modules that target custom driver development. Although the usage of these modules is
beyond the scope of this document, they are briefly discussed here for the benefit of driver developers. Note: Sensoray does not
provide technical support for custom driver developers who are using these source code modules.

CLS626.CPP Abstract C++ class, named Cls626, that serves as a foundation for developing a custom Model 626 driver
for any platform.

CLS626.H Header file for the Cls626 class. Include this file in all C/C++ modules that reference the abstract class
implemented in CLS626.CPP.

Table 2: Required driver components for Windows NT4.

Filename Directory Function

S626.DLL SYSTEM Model 626 API

SXDRVNT.SYS SYSTEM32\DRIVERS Kernel-mode driver

Sensoray Instruction Manual 4 Model 626 Driver for Windows

The Cls626 class, declared in CLS626.H and implemented in CLS626.C, is intended to be the base class in a simple
inheritance hierarchy. Cls626 implements all board-specific, OS-independent functions for any driver. Cls626 encapsulates
all knowledge of Model 626 hardware and the machinations required to manipulate that hardware, but makes no assumptions
about the OS platform upon which the board is operating.

At a minimum, two software components must be designed and implemented by the driver developer:

? A derived, OS-dependent interface class. This derived class, which is based upon Cls626, must supply Cls626 with all
OS-dependent hardware access and system interface functions that are declared as pure virtuals in the Cls626 base class.
This interface class implements such functions as dynamic memory allocation, kernel-mode interrupt processing and PCI
BIOS interfacing.

? A driver Application Program Interface (API). This API, which is the software link between the application program and
the driver, must create objects of the derived class type and expose the underlying public Cls626 base class and derived
class functions to application programs.

Sensoray Instruction Manual 5 Model 626 Driver for Windows

Chapter 3: Fundamentals of Usage

3.1 Board Addressing

3.1.1 Board Handles

Each board is assigned a board number, which is referenced in this document as a “handle.” A handle is the logical address of a
board. Most driver functions include the board handle as a parameter so that driver calls will be directed to a specific board.
Since the driver supports up to sixteen Model 626 boards, valid handles may have any numerical value in the range 0 to 15.

Board handles are not OS-allocated handles in the traditional Windows sense, but rather are integer values that are assigned by
the application program. When a board is first declared to the driver by the application program, any valid, unused handle may
be specified for that board. Once a handle has been assigned to a board, it must not be used by any other board.

3.1.2 Physical Addressing

In addition to the board handle, which is the “logical” address for a board, each board also has a physical address. A board’s
physical address is always specified as a 32-bit, unsigned integer value. The physical address is a composite value that indicates
both the PCI slot number and PCI bus number that the board resides in. The high word (16 bits) of the address value represents
the bus number and the low word represents the slot number within that bus. For example, the physical address value
0x0002000A indicates that the board is located in bus number 2, slot 10.

It is not always necessary to know the physical address of a board. A system containing a single Model 626 board, for example,
has no need to know the location of the board; it is truly “plug and play.” If two or more Model 626 boards are present in a
system, however, it is essential that some means be provided to distinguish between the boards; that means is the physical
address.

Note: PCI slot and bus numbers referenced by S626.DLL are generated by the PCI BIOS and consequently may differ from the
assigned ordinal slot and bus numbers.

Two of the driver functions make use of physical board addresses:

? S626_OpenBoard() declares a board to the driver in order to establish a connection to the board.

? S626_GetAddress() returns the physical address of a connected board.

3.2 Thread-Safety
All driver functions are inherently thread-safe for multi-threaded, single-process applications. Although the driver is thread-
safe, it does not allow multiple concurrent access to driver functions on a single board. The driver enforces this restriction. In
other words, in multithreaded applications, although any thread can call any driver function at any time, the driver may block
another thread from accessing the same board until the original thread leaves the driver.

The driver does not block if two threads concurrently access two different boards. However, if two threads concurrently access a
single board, there is potential for blocking.

To guarantee thread-safe behavior in multi-process applications, two processes must never share access, concurrent or otherwise,
to a single Model 626 board. The application is responsible for enforcing this restriction.

Sensoray Instruction Manual 6 Model 626 Driver for Windows

3.3 Channel Numbering
Many of the I/O resource classes provided by the Model 626 board have multiple instances of I/O circuitry which are referred to
as channels. For example, the board has four analog output channels and 48 digital I/O channels.

Each DLL function that accesses a specific channel requires a channel number argument to designate the channel to be affected
by the function. By convention, channel numbers always begin at zero and extend upward to the maximum valid channel
number belonging to the addressed board:

? Digital I/O channel numbers range from 0 to 47.

? Analog Input channel numbers range from 0 to 15.

? Analog Output channel numbers range from 0 to 3.

? Counter channel numbers range from 0 to 5, as shown in Table 3.

3.4 Programming Examples
The C++ programming language has been used to code all programming examples. In most cases, programming examples can
be easily adapted to other programming languages.

3.4.1 Data Types

All data values that are passed to or returned from DLL functions belong to a small set of data types. The data types employed
by the API are listed in Table 4. Data types are referenced by their type names as shown in the left column of the table.

Table 3: Counter channel numbering assignments.

Channel Number 0 1 2 3 4 5

Addressed Counter 0A 1A 2A 0B 1B 2B

Table 4: Data types used by DLL functions

Type Name Description

BYTE 8-bit, unsigned integer

WORD 16-bit, unsigned integer

SHORT 16-bit, signed integer

COUNTER_SETUP 16-bit, unsigned integer. See Section 4.6.2 for details.

DWORD 32-bit, unsigned integer

HBD 32-bit, unsigned integer

LONG 32-bit, signed integer

DOUBLE 8-byte, double-precision floating point value.

FPTR_ISR Address of a function that takes no arguments and returns no value.

Sensoray Instruction Manual 7 Model 626 Driver for Windows

3.5 Required Function Calls

3.5.1 DLL Linking/Unlinking

Any application that accesses functions in S626.DLL must dynamically link to the DLL before calls are made to any of the
DLL functions. Such applications must also unlink from the DLL when the application is terminated so that resources used by
the DLL will be released. The means by which DLL linking and unlinking is implemented depends on your development
environment.

If you are developing an application using C/C++, your application must call S626_DLLOpen() to dynamically link to the
DLL before calling any DLL functions, and S626_DLLClose() to unlink from the DLL when the application terminates.
These two functions are provided for C/C++ developers in the WIN626.C module on the distribution media. If you are using a
language other that C/C++ that does not perform automatic DLL linking, you must provide functions equivalent to
S626_DLLOpen() and S626_DLLClose() in your source language format.

Applications developed in Visual Basic do not require calls to equivalent S626_DLLOpen() or S626_DLLClose()
functions because VB automatically links to a DLL when any DLL function is first called, and automatically unlinks from a
previously linked DLL when the application terminates.

3.5.2 Board Initialization

Some DLL functions are used universally in all applications, while others, depending on application requirements, may or may
not be used. All application programs must, as a minimum, perform the following steps for each Model 626 board:

1. Call S626_OpenBoard() to enable communication with the Model 626 board.
2. Call S626_GetErrors() to verify that the board is properly initialized, fault-free and ready to communicate.

Sensoray Instruction Manual 8 Model 626 Driver for Windows

Chapter 4: DLL Functions

4.1 Registration and Status Functions

4.1.1 S626_OpenBoard()

Function: Registers a Model 626 board with the driver.

Prototype: VOID S626_OpenBoard(HBD hbd, DWORD address, FPTR callback, DWORD priority);

The priority argument may be set to one of the following values:

Returns: None.

Notes: This function registers a Model 626 board so that communication between the application program and board
hardware will be enabled. Each board must be registered by this function before calling any other DLL functions
that reference that board.

After registering a board, you may re-register the board by calling S626_OpenBoard() with the same board
handle. This has the effect of calling S626_CloseBoard() to unregister the board (see Section 4.1.2), and
then calling S626_OpenBoard() to register and reset the board. This feature can be used to automate recovery
from soft failures that may have set “unrecoverable” error flags on a board.

Do not register two different boards (with two different handles) at the same physical address. This will result in
unpredictable behavior and may cause your system to become unstable.

When you specify an address value equal to zero, the driver will seek and register the first Model 626 board in your
system. This feature is useful in either of two cases:

1. You have only one Model 626 board in your system, therefore the application does not need to know the

Parameter Type Description

hbd HBD Board handle. Use any value between 0 and 15, inclusive, but do not use a value that
has already been used for another Model 626 board.

address DWORD Composite physical address (as described in section 3.1.2) of the Model 626 board.
The high 16-bit word contains the PCI bus number and the low word contains the
PCI slot number.
Set to zero to force the driver to detect and register any Model 626 board. You may
then determine the address of the board by calling S626_GetAddress().

callback FPTR_ISR Address of the application’s interrupt callback function (see Section 4.10.1 for a
discussion of interrupt callback functions). Set to zero if interrupts will not be used.

priority DWORD Priority level of the interrupt handler thread. See below for details.

Value Priority level

-2 THREAD_PRIORITY_LOWEST

-1 THREAD_PRIORITY_BELOW_NORMAL

 0 THREAD_PRIORITY_NORMAL. Specify this value if interrupts will not be used.

 1 THREAD_PRIORITY_ABOVE_NORMAL

 2 THREAD_PRIORITY_HIGHEST

 3 THREAD_PRIORITY_TIME_CRITICAL

Sensoray Instruction Manual 9 Model 626 Driver for Windows

board’s physical location in the system. In this case, your application can simply specify zero for the
address value.

2. You have two or more Model 626 boards in your system and you are unsure of the physical address values to
specify in your application program. In this case, you may insert a Model 626 board into one of the PCI slots
in which it will be residing when you execute your application, then call S626_OpenBoard() with
address set to zero, followed by a call to S626_GetAddress() to determine the physical location of the
board. The single Model 626 board is then moved to the slot in which the next Model 626 board will reside,
and this process is repeated to learn the next physical address, etc. Once all of the physical addresses are
known, they are “hardwired” into your application program and all of the target slots may be populated.

S626_OpenBoard() configures all board I/O resources as if a PCI bus hardware reset had occurred. The bullet
items below detail the board configuration resulting from execution of this function. The last two items, battery
backup and counter subsystems, are left unmodified in order to support battery backup of the counters during
system power failure.

? The board’s master interrupt is masked (disabled).

? The watchdog timer is disabled and the timer interval is set to 0.125 seconds.

? All digital I/O (DIO) outputs are programmed to the inactive state.

? Edge capturing is disabled on all DIO channels.

? Interrupts are disabled on all DIO channels.

? All DIO event capture edge polarities are set to zero (rising edges selected).

? DIO channel 0-5 are configured to operate as standard DIOs (vs. counter overflow outputs).

? All analog output channels are programmed to zero volts out.

? No ADC poll list is in effect; S626_ResetADC() must be called before S626_ReadADC().

? Battery charging is disabled.

? Battery backup is unmodified.

? Counter cores, status and control registers are unmodified, except that all counter interrupts are disabled.

Example: ///
// Declare board number 0, address unknown, no interrupts.
///

S626_OpenBoard(0, 0, 0, 0);

if (S626_GetErrors(0))
{
 // Handle error
}

Example: //
// Declare board number 2, which resides at bus 0, slot 11, no interrupts.
//

#define BUS 0
#define SLOT 11

S626_OpenBoard(2, (BUS << 16) | SLOT, 0, 0);

if (S626_GetErrors(2))
{
 // Handle error
}

Sensoray Instruction Manual 10 Model 626 Driver for Windows

Example: //
// Declare board number 3, which resides at bus 1, slot 10, with interrupts.
// IntFunc() is the application ISR callback function.
//

S626_OpenBoard(3, 0x0001000A, IntFunc, THREAD_PRIORITY_NORMAL);

if (S626_GetErrors(3))
{
 // Handle error
}

4.1.2 S626_CloseBoard()

Function: Unregisters a Model 626 board with the driver.

Prototype: VOID S626_CloseBoard(HBD hbd);

Returns: None.

Notes: This function unregisters a Model 626 board that has been previously registered by S626_OpenBoard(). When
called, this function will sever the driver’s communication link between the application program and board
hardware, and the board handle will be freed. Once freed, the board handle is available for assignment to the same
board or to any other Model 626 board.

Each Model 626 board that has been registered by S626_OpenBoard() must be unregistered when its hardware
resources are no longer needed by an application. This can be accomplished by calling S626_CloseBoard().

S626_CloseBoard() modifies I/O resource states as follows:

? The board’s master interrupt is masked (disabled).

? The watchdog timer is disabled.

? Battery charging is disabled.

Except as listed above, S626_CloseBoard() does not modify the states of board resources. If any board
resources (i.e., analog output voltages or digital outputs) are to be programmed to application-defined “shutdown”
states, the application must call the appropriate driver functions to program these states before calling
S626_CloseBoard().

Example: //
// Unregister board number 0 after programming analog and digital outputs
// to their application-defined "shutdown" states.
//

// Program all analog outputs to zero volts.
for (WORD DacChan = 0; DacChan < 4; S626_WriteDAC(0, DacChan++, 0);

// Program all digital outputs to the inactive state.
for (WORD Group = 0; Group < 3; S626_DIOWriteBankSet(0, Group++, 0);

// Unregister the board and release its handle.
S626_CloseBoard(0);

Parameter Type Description

hbd HBD Board handle of the board to be unregistered.

Sensoray Instruction Manual 11 Model 626 Driver for Windows

4.1.3 S626_GetErrors()

Function: Returns error flags and clears to zero all resettable error flags.

Prototype: DWORD S626_GetErrors(HBD hbd);

Returns: DWORD consisting of zero or more active-high bit flags. Each bit flag is an indicator for a specific error condition
as designated by the following bit masks:

Notes: This function may be called at any time after the target board has been opened with S626_OpenBoard().

The symbolic names in the above error flag list are the names used to reference the bit mask values in the supplied
C language source code. The definitions for these symbolic names may be found in the APP626.H source file.

Error flags with mask values of 0x00010000 and higher are associated with recoverable errors and are
automatically reset to zero when S626_GetErrors() executes. Error flags with mask values below

Parameter Type Description

hbd HBD Board handle.

Bit Mask Symbolic Name Description

0x00000001 ERR_OPEN Failed to open the kernel-mode driver. This is usually caused by a
missing or unregistered software component. Make sure all required
driver software components are properly installed and registered and
no unnecessary driver components are installed or registered. See
Chapter 2 for details.

0x00000002 ERR_CARDREG Kernel-mode driver can’t register the board. This is usually caused by
applications that fail to unlink from S626.DLL when terminating. If this
is not the case, the kernel-mode driver may be improperly installed or
registered. See Chapter 2 for details.

0x00000004 ERR_ALLOC_MEMORY Memory allocation error. This is typically caused by insufficient
system RAM.

0x00000008 ERR_LOCK_BUFFER DMA buffer lock failed.

0x00000010 ERR_THREAD System failed to launch the interrupt thread.

0x00000020 ERR_INTERRUPT Kernel-mode driver failed to enable interrupt.

0x00000040 ERR_LOST_IRQ Missed interrupt. This is the result of interrupts that are occuring at
too high a rate for the CPU to handle.

0x00000080 ERR_INIT Failed to instantiate board object. This is typically caused by
insufficient system RAM.

0x00000100 ERR_VERSION Incompatible version of kernel-mode driver. Upgrade to the latest
version of SXDRVR to resolve this problem.

0x00010000 ERR_ILLEGAL_PARM Illegal function argument value (i.e., invalid DAC or ADC channel
number was specified).

0x00020000 ERR_I2C Board EEPROM access fault during board initialization. If this
occurs, try unregistering the board and then re-registering it. If the
error persists, the problem is likely a hardware fault that requires
board repair.

0x00100000 ERR_DACTIMEOUT DAC communication time-out.

0x00200000 ERR_COUNTERSETUP Counter parameter is illegal in current counter operating mode.

0x00400000 ERR_DEBI_TIMEOUT Local bus access fault.

Sensoray Instruction Manual 12 Model 626 Driver for Windows

0x00010000 are associated with unrecoverable errors and can be cleared only by unregistering the board and
then re-registering it. See Section 4.1.1 for details.

Once an error flag is set, it remains set until cleared by re-registering the board, or, in the case of recoverable errors,
S626_GetErrors() is called.

Example: ///
// Fetch all error flags from board number 2 and reset recoverable error flags.
///

DWORD faults = S626_GetErrors(2);

4.1.4 S626_GetAddress()

Function: Returns the physical address of a Model 626 board.

Prototype: DWORD S626_GetAddress(HBD hbd);

Returns: DWORD value consisting of the PCI bus number in the high 16-bit word and PCI slot number in the low word.

Notes: This function serves primarily as a utility to help application developers determine the slot and bus numbering
conventions of a PCI system. In PCI systems that have multiple Model 626 boards, the ability to reference a
specific board is mandatory. For example, one board might control a heater while a second board controls a cooler.
For obvious reasons, the application must be able to distinguish between these boards, and the only way to do this
is to assign fixed physical addresses to each board.

Example: ///
// Determine the physical addresses of a Model 626 board. With no other
// Model 626 boards installed in the system, a single Model 626 board
// is inserted into the target PCI slot, then this code is executed to
// determine the slot’s physical address.
///

// Declare board to driver; set address to zero to force the driver to locate
// a Model 626 board. Interrupts will not be used on this board.
S626_OpenBoard(0, 0, 0, 0);

// Handle any errors.
if (S626_GetErrors(0))
{
 // Handle error
}

// Fetch composite address from driver.
DWORD adrs = S626_GetAddress(0);

// Display PCI bus and slot numbers.
printf("Bus no. = %d, Slot no. = %d\n", adrs >> 16, adrs & 0xFFFF);

4.2 Register Access Functions
The register access functions may be used to directly read from or write to any register in the Model 626 board’s local address
space. These functions serve primarily as diagnostics since nearly all of the board’s functional features can be manipulated from
other, higher-level functions provided by the DLL.

Parameter Type Description

hbd HBD Board handle.

Sensoray Instruction Manual 13 Model 626 Driver for Windows

4.2.1 S626_RegRead()

Function: Returns a value from a Model 626 local bus hardware register.

Prototype: WORD S626_RegRead(HBD hbd, WORD regadrs);

Returns: WORD value consisting of the 16-bit value read from the target hardware register.

Notes: Use this function to read the contents of a local bus hardware register on a Model 626 board.

Example: ///
// Read the states of digital inputs channels 0-15 from board number 0.
///

#define REG_RDDINA 0x0040 // Port address used to read DIO group 0 inputs.

// Capture a snapshot of the input states of digital I/O channels 0-15.
WORD InputStates = S626_RegRead(0, REG_RDDINA);

4.2.2 S626_RegWrite()

Function: Writes a value into a Model 626 local bus hardware register.

Prototype: VOID S626_RegWrite(HBD hbd, WORD regadrs, WORD value);

Returns: None.

Notes: Use this function to write a value into a local bus hardware register on a Model 626 board.

Example: ///
// Write all zeros to the MISC1 register on board number 2.
///

#define REG_MISC1 0x0088 // Port address of MISC1 control register.

// Write zeros to the MISC1 register.
S626_RegWrite(2, REG_MISC1, 0);

Parameter Type Description

hbd HBD Board handle.

regadrs WORD Address of the target hardware register expressed as an offset
from the base address of the board’s local register space.

Parameter Type Description

hbd HBD Board handle.

regadrs WORD Address of the target hardware register expressed as an offset from
the base address of the board’s local register space.

value WORD Data value to be written to the hardware register.

Sensoray Instruction Manual 14 Model 626 Driver for Windows

4.3 Analog Input Functions

4.3.1 S626_ResetADC()

Function: Initializes the analog-to-digital converter in preparation for digitizing analog inputs.

Prototype: VOID S626_ResetADC(HBD hbd, BYTE *pollist);

Returns: None.

Notes: Before executing any A/D conversions, a “poll” list must be created. The poll list is a schedule of analog-to-digital
acquisitions that will transpire when S626_ReadADC() is called.

The poll list contains at least one and as many as sixteen acquisition items. Each item has two components: the
analog input channel number to be digitized and the gain to be applied during the measurement. The last item in
the list is marked with an End Of Poll List (EOPL) flag. When an A/D conversion is started, all items in the poll
list are digitized in the order in which they appear in the list. Channel ordering is purely arbitrary and is at the
discretion of the application programmer.

After populating or modifying the poll list, S626_ResetADC() must be called to initialize the ADC and to pass to
it the poll list. When this has been done, S626_ReadADC() may be called to invoke the actual A/D conversions.
Calls to S626_ReadADC() may be repeated as desired so long as the poll list is not changed. If a new set of
channels is required or any measurement ranges need to be changed, the poll list must be modified and
S626_ResetADC() must be called again before the next call to S626_ReadADC().
It is possible to digitize a channel more than once during a single scan by repeating the channel in the poll list. If an
analog input channel must be converted repeatedly (i.e., for oversampling), it may be faster to duplicate the channel
in the poll list; this strategy will return up to sixteen successive digitized values from the channel with a single call
to S626_ReadADC().

Each poll list item occupies one byte, as shown in Figure 2.

Figure 2: Organization of a byte in an A/D poll list.

? EOPL is set to 1 to mark the end of the poll list, or 0 to indicate more poll list items follow the current item.

? GAIN sets the ADC full-scale input range: 0 selects the ±10V range, 1 selects the ±5V range.

? CHANNEL NUMBER specifies the analog input channel in the range 0 through 15.

Example: See “A/D Programming Examples” on page 16.

Parameter Type Description

hbd HBD Board handle.

pollist BYTE* Address of a poll list.

7 6 5 4 3 2 1 0

EOPL 0 0 GAIN CHANNEL NUMBER

Sensoray Instruction Manual 15 Model 626 Driver for Windows

4.3.2 S626_StartADC()

Function: Initiates digitization of all acquisition items in an ADC poll list.

Prototype: VOID S626_StartADC(HBD hbd);

Returns: None.

Notes: This function initiates a sequence of A/D conversions, as specified by a poll list, and then immediately returns
without waiting for the sequence to run to completion. The conversion process will then run autonomously while
the application performs other tasks.

When called, this function launches an I/O channel program that runs on a dedicated I/O processor residing on the
Model 626 board. The I/O processor runs independently of the system processor so that, regardless of what is
happening in the Windows environment, the time interval between the A/D acquisitions specified in the poll list
will be deterministic.

Before calling this function, S626_ResetADC() must be called to convert the target poll list into an equivalent I/O
channel program. In addition, S626_ResetADC() must be called again if the poll list is modified in any way.

Example: See Section 4.3.5.

4.3.3 S626_WaitDoneADC()

Function: Retrieves the digitized values resulting from a call to S626_StartADC().

Prototype: VOID S626_WaitDoneADC(HBD hbd, SHORT *databuf);

Returns: None.

Notes: Before calling this function, S626_StartADC() must be called to invoke the conversion process. This function
stores the resulting signed, digitized data values in the databuf[] array. The calling thread will be blocked until
the conversion process has finished and digitized data has been transferred to databuf[].

Example: See Section 4.3.5.

4.3.4 S626_ReadADC()

Function: Digitizes all acquisition items in an ADC poll list.

Prototype: VOID S626_ReadADC(HBD hbd, SHORT *databuf);

Returns: None.

Parameter Type Description

hbd HBD Board handle.

Parameter Type Description

hbd HBD Board handle.

databuf SHORT* Address of an array that will receive the digitized data.

Parameter Type Description

hbd HBD Board handle.

databuf SHORT* Address of an array that will receive the digitized data.

Sensoray Instruction Manual 16 Model 626 Driver for Windows

Notes: This function performs a sequence of A/D conversions, as specified by a poll list, and stores the signed, digitized
data values in the databuf[] array. It is the equivalent of calling two other functions in sequence:
S626_StartADC() and S626_WaitDoneADC().

When called, this function launches an I/O channel program that runs on a dedicated I/O processor residing on the
Model 626 board. The I/O processor runs independently of the system processor so that, regardless of what is
happening in the Windows environment, the time interval between the A/D acquisitions specified in the poll list
will be deterministic.

Before calling this function, S626_ResetADC() must be called to convert the target poll list into an equivalent I/O
channel program. In addition, S626_ResetADC() must be called again if the poll list is modified in any way.

Example: See Section 4.3.5.

4.3.5 A/D Programming Examples

4.3.5.1 Example: Scattered Acquisition

///
// Digitize channels 2, 3 and 6 on board number 0.
///

#define RANGE_10V 0x00 // Range code for ADC ±10V range.
#define RANGE_5V 0x10 // Range code for ADC ±5V range.
#define EOPL 0x80 // ADC end-of-poll-list marker.
#define CHANMASK 0x0F // ADC channel number mask.

// Allocate data structures. We allocate enough space for maximum possible
// number of items (16) even though this example only has 3 items. Although
// this is not required, it is the recommended practice to prevent programming
// errors if your application ever modifies the number of items in the poll list.
BYTE poll_list[16]; // List of items to be digitized.
SHORT databuf[16]; // Buffer to receive digitized data.

// Populate the poll list.
poll_list[0] = 2 | RANGE_10V; // Chan 2, ±10V range.
poll_list[1] = 3 | RANGE_5V; // Chan 3, ±5V range.
poll_list[2] = 6 | RANGE_10V | EOPL; // Chan 6, ±10V range, mark as list end.

// Prepare for A/D conversions by passing the poll list to the driver.
S626_ResetADC(0, poll_list);

// Digitize all items in the poll list. As long as the poll list is not modified,
// S626_ReadADC() can be called repeatedly without calling S626_ResetADC() again.
// This could be implemented as two calls: S626_StartADC() and S626_WaitDoneADC().
S626_ReadADC(0, databuf);

// Display all digitized binary data values.
for (int i = 0; i <= 2; i++)
 printf("Channel %d = %d\n", poll_list[i] & CHANMASK, databuf[i]);

4.3.5.2 Example: Oversampling

///
// Average sixteen measurements from analog input channel 2, board number 0.
// Channel 2 will be digitized on the ±10V input range.
///

#define EOPL 0x80 // ADC end-of-poll-list marker.

SHORT databuf[16]; // Buffer to receive digitized data.

Sensoray Instruction Manual 17 Model 626 Driver for Windows

// Create and populate a poll list to digitize channel 2 sixteen times.
BYTE poll_list[] = { 2,2,2,2, 2,2,2,2, 2,2,2,2, 2,2,2,2|EOPL };

// Prepare for A/D conversions by passing the poll list to the driver.
S626_ResetADC(0, poll_list);

// Digitize all items in the poll list. As long as the poll list is not modified,
// S626_ReadADC() can be called repeatedly without calling S626_ResetADC() again.
S626_ReadADC(0, databuf);

// Compute and display the average of the 16 measured values.
LONG sum = 0;
WORD *pbuf = databuf;
for (int i = 0; i < 16; sum += (LONG)(*pbuf++));
printf("Average A/D value = %d\n", (WORD)(sum >> 4));

4.4 Analog Output Functions

4.4.1 S626_WriteDAC()

Function: Programs an analog output setpoint on one DAC channel.

Prototype: VOID S626_WriteDAC(HBD hbd, WORD chan, LONG setpoint);

Returns: None.

Notes: Setpoint values that exceed the valid value range will be limited to the legal range; values less than -8191 will be
forced to -8191, and values greater than +8191 will be forced to +8191.

Example: ///
// This function sets a DAC channel to the specified output voltage.
///

#define DAC_VSCALAR 819.1 // Binary-to-volts scalar for DAC.

SetDacVoltage(HBD hbd, WORD channel, DOUBLE volts)
{
 // Make adjustments to prevent conversion errors.
 if (volts > 10.0) volts = 10.0;
 else if (volts < -10.0) volts = -10.0;

 // Program new DAC setpoint.
 S626_WriteDAC(hbd, channel, (LONG)(volts * DAC_VSCALAR));
}

Parameter Type Description

hbd HBD Board handle.

chan WORD Channel number of the DAC that will be programmed to the new setpoint.
Valid channel numbers range from 0 through 3. Specifying a DAC
channel number greater than 3 will cause the ERR_ILLEGAL_PARM
error flag to be set

setpoint LONG New setpoint value. Values may range from -8191 to +8191.

Sensoray Instruction Manual 18 Model 626 Driver for Windows

4.5 Digital I/O (DIO) Functions

4.5.1 DIO Channel Groups

In many of the DIO functions, DIO channels are addressed and manipulated in sets of sixteen channels called groups. Model
626 has a total of 48 DIO channels, numbered 0 through 47, which are affiliated with three 16-channel DIO groups, designated
as group numbers 0 through 2. Each channel is assigned a fixed bit position within a 16-bit integer value that encapsulates the
group. The relationships between groups and channels are shown in Table 5.

For example, consider DIO channel group number 2. Any access to this group will be in the form of a sixteen-bit word whose
most significant bit corresponds to DIO channel 47 and least significant bit corresponds to DIO channel 32.

4.5.2 DIO Signal Polarity

Each DIO channel is electrically configured to function as an open-collector, active low, “wired-OR” circuit. This means that a
DIO channel is actively driven to zero volts when it is turned “on,” and is passively pulled up to +5 Volts when it is turned “off.”
In the context of the logical state of a DIO channel, however, logic zero represents the “off” state and logic one represents the
“on” state.

To avoid confusion, all references to DIO channel states are restricted to either the logical states, 1 and 0, or the equivalent
generic terms active and inactive.

4.5.3 S626_DIOModeSet()

Function: Sets the operating mode of a dual-mode DIO channel.

Prototype: VOID S626_DIOModeSet(HBD hbd, WORD chan, WORD overflow);

Table 5: Relationships between DIO groups and channels.

DIO Group
Number

DIO Channel
Range

Bit Assignments of DIO Channels in Group Word

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 to 15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 16 to 31 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

2 32 to 47 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Table 6: Equivalent representations of DIO signal states.

Generic Physical Logical

Active (on) 0V, active driver 1

Inactive (off) +5V, passive driver 0

Parameter Type Description

hbd HBD Board handle.

chan WORD DIO channel number, in the range 0 to 5, for which the operating mode is to be
programmed. Specifying an illegal channel number will cause the
ERR_ILLEGAL_PARM error flag to be set.

overflow WORD Indicates whether the specified DIO channel is to operate as a standard DIO
(zero) or as a counter overflow output (non-zero).

Sensoray Instruction Manual 19 Model 626 Driver for Windows

Returns: None.

Notes: Each of DIO channels 0 through 5 can independently function as either a DIO or as a counter overflow output.
Table 7 shows the relationship between DIO channel number and associated counter channel number. For
example, DIO channel 4 can behave either as a standard DIO or as the overflow output for counter 2A (counter
channel number 2).

When configured as a counter overflow output, a DIO will produce a single, 500 nanosecond wide output pulse
when the associated counter overflows.

Example: //
// Configure board 0, DIO channel 2 as overflow output for counter channel 1A.
//

#define DIO_STANDARD 0
#define DIO_OVERFLOW 1

S626_DIOModeSet(0, 2, DIO_OVERFLOW);

4.5.4 S626_DIOModeGet()

Function: Returns the operating mode of a dual-mode DIO channel.

Prototype: WORD 626_DIOModeGet(HBD hbd, WORD chan);

Returns: WORD value indicating the operating mode of the specified DIO channel. Zero indicates the channel is operating
as a standard DIO, non-zero indicates the channel is operating as a counter overflow output (see Table 7 for
associated counter channel numbers).

Example: //
// Display the operating mode of board number 0, DIO channel 2.
//

printf(S626_DIOModeGet(0, 2) ? "Overflow Mode" : "Standard Mode");

Table 7: Counter channels associated with dual-function DIO channels.

DIO Channel : 0 1 2 3 4 5

Counter Channel : 0A 0B 1A 1B 2A 2B

Parameter Type Description

hbd HBD Board handle.

chan WORD DIO channel number, in the range 0 to 5, from which the operating mode shall
be returned. Specifying an illegal channel number will cause the
ERR_ILLEGAL_PARM error flag to be set.

Sensoray Instruction Manual 20 Model 626 Driver for Windows

4.5.5 S626_DIOWriteBankSet()

Function: Modifies the output states of a DIO channel group.

Prototype: VOID S626_DIOWriteBankSet(HBD hbd, WORD group, WORD states);

Returns: None.

Notes: This function simultaneously modifies the output states of all sixteen channels in the target DIO channel group.

Any DIO channel which is to serve as a digital input must be programmed to the inactive state. This causes the
channel to be passively driven to the inactive state, thereby allowing an external signal source to assert control over
the physical DIO state.

Example: //
// On board number 0, set DIO channels 0-11 inactive and channels 12-15 active.
//

S626_DIOWriteBankSet(0, 0, 0xF000); // Channels 0-15 are in group 0.

4.5.6 S626_DIOWriteBankGet()

Function: Returns the output states of a DIO channel group.

Prototype: WORD S626_DIOWriteBankGet(HBD hbd, WORD group);

Returns: WORD value containing the logical output states of all sixteen channels in the target DIO channel group. Each bit
of the returned word represents the logical output state of the corresponding DIO channel: zero indicates the
inactive state, and one indicates the active state. See Section 4.5.1 for a description of the bit position of each DIO
channel in the returned value.

Notes: The returned value reflects the states of the board’s DIO channel output drivers, which in normal operation are the
same as the values last written by S626_DIOWriteBankSet(). This is in contrast with the values returned by
S626_DIOReadBank(), which represents the input states present on the DIO channels. The value returned
from S626_DIOReadBank() can be affected by external signal sources driving the DIO channels, while the
value returned from S626_DIOWriteBankSet() is influenced only by the Model 626 output drivers.

Example: //
// Display the output states of DIO channels 16-31 on board number 0.
//

Parameter Type Description

hbd HBD Board handle.

group WORD Group number of the sixteen DIO channels that will be programmed to new state
values. Legal values are 0, 1 or 2, as described in Section 4.5.1.

states WORD New logical state values to be written to the sixteen DIO channels belonging to
group. Set a bit value to zero to program the corresponding DIO channel to the
inactive state, or to one to program the channel to the active state. See Section
4.5.1 for a description of the bit position of each DIO channel in states. See
Section 4.5.2 for a discussion of logical vs. physical channel states.

Parameter Type Description

hbd HBD Board handle.

group WORD Group number of the sixteen DIO channels whose output states are to be returned.
Legal values are 0, 1 or 2, as described in Section 4.5.1. Specifying a DIO group
number greater than 2 will cause the ERR_ILLEGAL_PARM error flag to be set.

Sensoray Instruction Manual 21 Model 626 Driver for Windows

WORD states = S626_DIOWriteBankGet(0, 1); // Channels 16-31 are in group 1.

for (int i = 15; i >= 0; i--)
 printf("DIO %d driver state = %d\n", i + 16, (states >> i) & 1);

Example: ///
// This function sets the specified DIO channel (chan numbers range from 0
// to 47) to the active state without affecting any other DIO channels.
///

VOID DIO_SetToActive(HBD hbd, WORD chan)
{
 WORD group = chan >> 4; // Group number associated with chan.
 WORD mask = 1 << (chan & 15); // Bit mask for chan within its group.

 S626_DIOWriteBankSet(0, group, S626_DIOWriteBankGet(0, group) | mask);
}

4.5.7 S626_DIOReadBank()

Function: Returns the logical input states of a DIO channel group.

Prototype: WORD S626_DIOReadBank(HBD hbd, WORD group);

Returns: WORD value containing the logical input states of all sixteen channels in the target DIO group. Each bit of the
returned word represents the logical input state of the corresponding DIO channel: zero indicates the inactive state,
and one indicates the active state. See Section 4.5.1 for a description of the bit position of each DIO channel in the
returned word value.

Notes: The returned value reflects the driven states of the board’s DIO inputs. The value is thus influenced by both the
board’s DIO output drivers and any external signal sources that may be physically driving DIO channels.

Example: //
// Display the logical input states of DIO channels 32-47 on board number 0.
//

WORD states = S626_DIOReadBank(0, 2); // Channels 32-47 are in group 2.

for (int i = 15; i >= 0; i--)
 printf("DIO %d input state = %d\n", i + 32, (states >> i) & 1);

Parameter Type Description

hbd HBD Board Handle.

group WORD Group number of the sixteen DIO channels whose input states will be returned.
Legal values are 0, 1 or 2, as described in Section 4.5.1. Specifying a DIO group
number greater than 2 will cause the ERR_ILLEGAL_PARM error flag to be set.

Sensoray Instruction Manual 22 Model 626 Driver for Windows

4.5.8 S626_DIOEdgeSet()

Function: Programs the polarity of edges that will trigger DIO event captures.

Prototype: VOID S626_DIOEdgeSet(HBD hbd, WORD group, WORD edges);

Returns: None.

Notes: This function should be called to select the polarity of edge events to be captured before enabling captures. After
programming the edge polarities, capturing may then be enabled by means of S626_DIOCapEnableSet().

Only DIO channels 0 through 39 have edge capture capability. Consequently, edges bits that reference DIO
channels 40 through 47 will be ignored when addressing channel group number 2.

Example: //
// On board 0, configure DIO channels 0-7 to capture DIO rising edge events,
// and channels 8-15 to capture falling edge events.
//

S626_DIOEdgeSet(0, 0, 0x00FF); // Channels 0-15 are in group 0.

4.5.9 S626_DIOEdgeGet()

Function: Returns the polarity of edges that will trigger DIO event captures.

Prototype: WORD S626_DIOEdgeGet(HBD hbd, WORD group);

Returns: WORD value containing the event capture edge polarities in use by the sixteen DIO channels belonging to group.
As described in Section 4.5.1, each bit represents the edge polarity of one DIO channel: zero indicates active-to-
inactive (falling) edge, and one indicates inactive-to-active (rising) edge.

Notes: Only DIO channels 0 through 39 have edge capture capability. Consequently, you should ignore any bits that
reference DIO channels 40 through 47 when addressing channel group number 2.

Parameter Type Description

hbd HBD Board Handle.

group WORD Group number of the sixteen DIO channels whose edge polarities will be
programmed. Legal values are 0, 1 or 2, as described in Section 4.5.1.
Specifying a DIO group number greater than 2 will cause the
ERR_ILLEGAL_PARM error flag to be set.

edges WORD Edge polarities to be used by the sixteen DIO channels belonging to group.
Set a bit value to zero to select the active-to-inactive (falling) edge, or to one to
select the inactive-to-active (rising) edge. See Section 4.5.1 for a description of
the bit position of each DIO channel in edges.

Parameter Type Description

hbd HBD Board Handle.

group WORD Group number of the sixteen DIO channels whose edge polarities are to be
returned. Legal values are 0, 1 or 2, as described in Section 4.5.1. Specifying a
DIO group number greater than 2 will cause the ERR_ILLEGAL_PARM error
flag to be set.

Sensoray Instruction Manual 23 Model 626 Driver for Windows

Example: //
// Display board 5, DIO channel 0-15 edge polarities.
//

WORD edges = S626_DIOEdgeGet(5, 0); // Channels 0-15 are in group 0.

for (int i = 15; i >= 0; i--)
 printf("DIO %d edge = %d\n", i, (edges >> i) & 1);

4.5.10 S626_DIOCapEnableSet()

Function: Enables/disables capturing of DIO edge events.

Prototype: VOID S626_DIOCapEnableSet(HBD hbd, WORD group, WORD chans, WORD enable);

Returns: None.

Notes: In order for edge events to be captured on a specific channel, the channel must have edge event capturing enabled
by this function. Typically, the edge polarity is first selected by means of S626_DIOEdgeSet(), and then
S626_DIOCapEnableSet() is called to enable captures of the selected edge.

Only DIO channels 0 through 39 have edge capture capability. Consequently, chans bits that reference DIO
channels 40 through 47 will be ignored when addressing channel group number 2.

Example: //
// On board 4, enable event capturing on channels 0-2 and leave event
// capture enables unmodified on channels 3-15. The chans value will
// be binary 0000_0000_0000_0111 (= decimal 7) to modify only channels 0-2.
//

#define DIOCAP_ENABLE 1
#define DIOCAP_DISABLE 0

S626_DIOCapEnableSet(4, 0, 7, DIOCAP_ENABLE); // Channels 0-15 are in group 0.

Parameter Type Description

hbd HBD Board Handle.

group WORD Group number of the sixteen DIO channels that are to be enabled/disabled for
event capturing. Legal values are 0, 1 or 2, as described in Section 4.5.1.
Specifying a DIO group number greater than 2 will cause the
ERR_ILLEGAL_PARM error flag to be set.

chans WORD Bit flags indicating which of the sixteen DIO channels belonging to group are
to be affected. See Section 4.5.1 for a description of the bit position of each
DIO channel in chans. Set a bit flag to zero to exclude the associated channel,
or to one to cause the channel’s event captures to be enabled or disabled as
specified by enable.

enable WORD Indicates whether DIO channels specified by chans are to have event captures
enabled or disabled. Set to zero to disable event captures, or to one to enable
event captures.

Sensoray Instruction Manual 24 Model 626 Driver for Windows

4.5.11 S626_DIOCapEnableGet()

Function: Returns DIO capture enables.

Prototype: WORD S626_DIOCapEnableGet(HBD hbd, WORD group);

Returns: WORD value containing the event capture enables of the sixteen DIO channels belonging to group. As described
in Section 4.5.1, each bit represents the edge polarity of one DIO channel: zero indicates channel event capturing is
disabled, and one indicates capturing is enabled.

Notes: Only DIO channels 0 through 39 have edge capture capability. Consequently, you should ignore any returned bits
that reference DIO channels 40 through 47 when addressing channel group number 2.

Example: //
// Display the states of DIO channel 0-15 capture enables on board number 5.
//

WORD enables = S626_DIOCapEnableGet(5, 0); // Channels 0-15 are in group 0.

for (int i = 15; i >= 0; i--)
 printf("DIO %d cap enable = %d\n", i, (enables >> i) & 1);

4.5.12 S626_DIOCapStatus()

Function: Returns captured DIO events.

Prototype: WORD S626_DIOCapStatus(HBD hbd, WORD group);

Returns: WORD value containing the event capture status of the sixteen DIO channels belonging to group. As described
in Section 4.5.1, each bit represents the edge polarity of one DIO channel: zero indicates no edge events have been
captured, and one indicates an edge event has been captured.

Notes: After capturing an edge event on a DIO channel, the associated capture status flag will be active and, if enabled by
S626_DIOIntEnableSet(), an interrupt request will be asserted.

To reset a channel’s capture status flag (and negate any affiliated interrupt request), you must disable its capture
enable flag by calling S626_DIOCapEnableSet(). You may then call S626_DIOCapEnableSet() again
to re-enable capturing for subsequent edge events.

Only DIO channels 0 through 39 have edge capture capability. Consequently, you should ignore any returned bits
that reference DIO channels 40 through 47 when addressing channel group number 2.

Parameter Type Description

hbd HBD Board Handle.

group WORD Group number of the sixteen DIO channels whose capture enables are to be
returned. Legal values are 0, 1 or 2, as described in Section 4.5.1. Specifying a
DIO group number greater than 2 will cause the ERR_ILLEGAL_PARM error
flag to be set.

Parameter Type Description

hbd HBD Board Handle.

group WORD Group number of the sixteen DIO channels whose capture status are to be
returned. Legal values are 0, 1 or 2, as described in Section 4.5.1. Specifying a
DIO group number greater than 2 will cause the ERR_ILLEGAL_PARM error
flag to be set.

Sensoray Instruction Manual 25 Model 626 Driver for Windows

Example: //
// Display the capture states of DIO channel 0-15 on board number 2.
//

WORD caps = S626_DIOCapStatus(2, 0); // Channels 0-15 are in group 0.

for (int i = 15; i >= 0; i--)
 printf("DIO %d captured = %d\n", i, (caps >> i) & 1);

4.5.13 S626_DIOCapReset()

Function: Resets DIO event capture flags.

Prototype: VOID S626_DIOCapReset(HBD hbd, WORD group, WORD chans);

Returns: None.

Notes: After capturing an edge event on a DIO channel, the associated capture status flag will be active and, if enabled by
S626_DIOIntEnableSet(), an interrupt request will be asserted. Call this function to reset one or more DIO
capture flags after the associated events have been processed. In addition to resetting the capture flags,
S626_DIOCapReset() also clears any corresponding interrupt service requests.

Only DIO channels 0 through 39 have edge capture capability. Consequently, chans bits that reference DIO
channels 40 through 47 will be ignored when addressing channel group number 2.

Example: //
// Reset event capture flags for board 2, DIO channels 0 and 1.
//

S626_DIOCapReset(2, 0, 0x0003); // Channels 0 and 1 are in group 0.

Parameter Type Description

hbd HBD Board Handle.

group WORD Group number of the sixteen DIO channels whose capture flags are to be
affected. Legal values are 0, 1 or 2, as described in Section 4.5.1. Specifying a
DIO group number greater than 2 will cause the ERR_ILLEGAL_PARM error
flag to be set.

chans WORD Bit flags indicating which of the sixteen DIO channels belonging to group are
to be affected. See Section 4.5.1 for a description of the bit position of each
DIO channel in chans. Set a bit flag to one to reset the channel’s event
capture flag, or to zero to leave the channel’s event capture flag in its current
state.

Sensoray Instruction Manual 26 Model 626 Driver for Windows

4.5.14 S626_DIOIntEnableSet()

Function: Enables/disables interrupt requests in response to captured DIO edges.

Prototype: VOID S626_DIOIntEnableSet(HBD hbd, WORD group, WORD enables);

Returns: None.

Notes: This function enables or disables interrupt request generation in response to captured edges on DIO channels. In a
typical application program, edge captures are configured and enabled by calling S626_DIOEdgeSet() and
S626_DIOCapEnableSet() before invoking S626_DIOIntEnableSet() to enable capture interrupts.

Only DIO channels 0 through 39 have edge capture capability. Consequently, enables bits that reference DIO
channels 40 through 47 will be ignored when addressing channel group number 2.

Example: See “Example: DIO Interrupts” on page 51.

4.5.15 S626_DIOIntEnableGet()

Function: Returns DIO interrupt enables.

Prototype: WORD S626_DIOIntEnableGet(HBD hbd, WORD group);

Returns: WORD value containing the interrupt enables of the sixteen DIO channels belonging to group. As described in
Section 4.5.1, each bit represents the interrupt enable of one DIO channel: zero indicates the interrupt is disabled,
and one indicates the interrupt is enabled.

Notes: Only DIO channels 0 through 39 have the ability to generate interrupt requests in response to captured edge events.
When addressing channel group number 2, all returned bits that reference DIO channels 40 through 47 should be
ignored.

Example: ///
// Display the interrupt enables of DIO channel 0-15 on board number 2.
///

WORD caps = S626_DIOIntEnableGet(2, 0); // Channels 0-15 are in group 0.

for (int i = 15; i >= 0; i--)
 printf("DIO %d interrupt enable = %d\n", i, (caps >> i) & 1);

Parameter Type Description

hbd HBD Board Handle.

group WORD Group number of the sixteen DIO channels whose interrupt enables are to be modified.
Legal values are 0, 1 or 2, as described in Section 4.5.1. Specifying a DIO group
number greater than 2 will cause the ERR_ILLEGAL_PARM error flag to be set.

enables WORD Bit flags indicating, for each of the sixteen DIO channels belonging to group,
whether the captured edge interrupt shall be enabled or disabled. See Section 4.5.1 for
a description of the bit position of each DIO channel in chans. Set a bit value to zero
to disable the associated channel interrupt, or to one to enable the interrupt.

Parameter Type Description

hbd HBD Board Handle.

group WORD Group number of the sixteen DIO channels whose interrupt enables will be returned.
Legal values are 0, 1 or 2, as described in Section 4.5.1. Specifying a DIO group
number greater than 2 will cause the ERR_ILLEGAL_PARM error flag to be set.

Sensoray Instruction Manual 27 Model 626 Driver for Windows

4.6 Counter Functions

4.6.1 Counter Operating Modes

Counters may be programmed to operate in various behavioral configurations called modes. The following modes are supported
by the Model 626 board:

? Timer. When operating in this mode, a counter will count either up or down at a constant rate.

? Counter. This mode supports external, two-phase or single-phase clock sources.

In the case of a two-phase, quadrature-encoded clock source, count and direction controls are derived from the two clock
phases. Clock multipliers of 1x, 2x and 4x are supported.

In the case of a single-phase clock source, the counter behaves as a simple event counter. Count control is derived from the
clock, and direction control is derived from a direction control input signal. Clock multipliers of 1x, 2x and 4x are legal, but
use of the 2x and 4x multipliers is not recommended.

? Extender. This mode, which applies only to B counters, causes a counter to behave as an extension of a paired A counter
that is configured as a Timer or Event Counter.

4.6.1.1 Input Signal Names

Each counter mode employs a unique combination of signal sources for the Clock, Direction and Index signals. To standardize
the descriptions of counter operating modes, the following symbolic names have been assigned to the various counter input
signal sources:

4.6.1.2 Using DIOs as Counter Outputs

DIO channels 0 through 5 may be configured to function as counter overflow outputs. See “S626_DIOModeSet()” and
“S626_DIOModeGet()” on page 19 for details.

4.6.1.3 Mode Descriptions

Counter operating modes are listed in Table 9.
These modes are selected by means of the
S626_CounterModeSet() function, as
described in Section 4.6.3.

Signal Name Function

SYS_C Fixed frequency, 2.0 MHz clock.

ENC_C Encoder clock input, B-phase.

ENC_D Encoder clock input, A-phase.

ENC_X Encoder index input.

OVR_A Overflow output from associated A counter.

Table 8: Symbols used to describe programmable attributes.

Symbol Meaning

? Attribute is programmable.

? Attribute is not programmable.

1 Clock multiplier 1x is supported.

1, 2, 4 Clock multipliers 1x, 2x and 4x are supported.

Sensoray Instruction Manual 28 Model 626 Driver for Windows

For each mode, Table 9 lists the input signal sources (detailed in Section 4.6.1.1) and all supported programmable attributes.
Symbols used to describe the programmable attributes are listed in Table 8.

4.6.2 Configuration Options

A counter’s operational configuration is programmed by means of S626_CounterModeSet() and may be retrieved via
S626_CounterModeGet(). These two functions employ a data structure, named “COUNTER_SETUP,” to convey all
counter configuration parameters. The COUNTER_SETUP structure is a WORD value that contains a collection of bit fields, as
shown in Figure 3.

Figure 3: Bit fields in the COUNTER_SETUP structure.

Except for the IntSrc and LatchSrc bit fields, all of the bit fields in the COUNTER_SETUP structure are used by both
S626_CounterModeSet() and S626_CounterModeGet(). The IntSrc and LatchSrc bit fields are utilized only
by S626_CounterModeGet(); they are ignored by the S626_CounterModeSet() function.

Bit fields that contain “0” are not used. To ensure compatibility with future driver enhancements, however, applications should
be designed so as to ignore these fields.

The functions of the COUNTER_SETUP bit fields are described in the following sections. Note that the fundamental operating
mode— Timer, Counter or Extender— is determined by the ClkSrc bit field, as described in Section 4.6.2.6.

4.6.2.1 IntSrc

IntSrc specifies the captured events that will cause an interrupt request.

The IntSrc bit field is ignored by S626_CounterModeSet(). When invoked, S626_CounterModeSet() resets all
captured events on the target counter and disables the counter’s interrupts by forcing IntSrc to INTSRC_NONE. After
configuring a counter, S626_CounterIntSourceSet() may be called to enable the counter to generate interrupts.

Table 9: Counter operating modes.

Mode

Input Signal
Sources

Programmable
Attributes Applies

To
Counters

Description
Clock Direction Clock

Polarity
Clock

Multiplier

Timer SYS_C Fixed ? 1 A and B
Fixed 2 MHz Clock.

Counter ENC_C/ENC_D ? 1, 2, 4 A and B Clock and direction driven by external inputs.

Extender OVR_A ENC_D ? 1 B only Clock driven by overflow output from paired A counter,
direction driven by external input.

5 4 3 2 1 0
ClkClkIndx Indx
Mult

11 10 9 8 7 615 14 13 12

PolSrc Pol
Int
Src

Latch
Src

Load
Src

Clk
Src

Clk
Enab

S626_CounterModeSet()
ignores these fields

Selects basic
operating mode

00

Sensoray Instruction Manual 29 Model 626 Driver for Windows

IntSrc may have one of the following values:

4.6.2.2 LatchSrc

LatchSrc specifies the events that will cause the counter contents to be latched. This attribute is shared by the A and B
counters belonging to a counter pair.

This bit field is ignored by S626_CounterModeSet(). When invoked, S626_CounterModeSet() will preserve the
current state of LatchSrc on the target counter. You must use S626_CounterLatchSourceSet() to modify the value
of LatchSrc for the target counter.

LatchSrc may have one of the following values:

4.6.2.3 LoadSrc

LoadSrc specifies the trigger event that will cause the preload register to be transferred into the counter core. This event may
be selected by means of the LoadSrc bit in conjunction with S626_CounterModeSet(), or alternatively, by calling
S626_CounterLoadTrig().

The meaning of LoadSrc bit field depends on whether an A or B counter is being addressed. In the case of A counters,
LoadSrc may be set to one of the following values:

In the case of B counters, LoadSrc may be set to one of the following values:

Value Symbolic Name Events that will generate interrupts.

 0 INTSRC_NONE None. Interrupts are disabled.

 1 INTSRC_OVER Captured counter overflow.

 2 INTSRC_INDX Captured counter index.

 3 INTSRC_ANY Captured counter overflow or index.

Value Symbolic Name Trigger Condition

 0 LATCHSRC_AB_READ Counter A or B latched when read by S626_CounterReadLatch().

 1 LATCHSRC_A_INDXA Counter A latched in response to counter A index.

 2 LATCHSRC_B_INDXB Counter B latched in response to counter B index.

 3 LATCHSRC_B_OVERA Counter B latched in response to counter A overflow.

Value Symbolic Name Trigger Event

 0 LOADSRC_INDX Counter A index.

 1 LOADSRC_OVER Counter A overflow.

 2 LOADSRCA_NONE Disabled.

 3 LOADSRC_NONE Disabled.

Value Symbolic Name Trigger Event

 0 LOADSRC_INDX Counter B index.

Sensoray Instruction Manual 30 Model 626 Driver for Windows

4.6.2.4 IndxSrc

IndxSrc specifies the signal source for the counter’s index input.

IndxSrc may be set to one of the following values:

4.6.2.5 IndxPol

IndexPol specifies the index edge to be used for triggering index-driven events. IndexPol is forced to zero if IndxSrc is
set to INDXSRC_SOFT.

IndexPol may be set to one of the following values:

4.6.2.6 ClkSrc

ClkSrc specifies the signal source to be used for clocking the counter core. In addition, this bit field implicitly determines the
basic operating mode for the counter channel.

ClkSrc may be set to one of the following values:

 1 LOADSRC_OVER Counter B overflow.

 2 LOADSRCB_OVERA Paired counter A overflow. This option is typically used in frequency counter applications in
which the A counter (configured as a Timer) provides measurement interval control and the
paired B counter (configured as a Counter) accumulates pulses from the frequency source.
Each time the A counter overflows, the B counter is automatically latched and reset to zero in
preparation for the next measurement interval.

 3 LOADSRC_NONE Disabled.

Value Symbolic Name Description

 0 INDXSRC_HARD Counter index is driven by the encoder physical index input, ENC_X, or by software
control via S626_CounterSoftIndex().

 1 INDXSRC_SOFT Counter index is controlled only by software via S626_CounterSoftIndex().
The physical encoder index input, ENC_X, is ignored.

Value Symbolic Name Description

 0 INDXPOL_POS Selects the rising (inactive-to-active) edge transition.

 1 INDXPOL_NEG Selects the falling (active-to-inactive) edge transition. This will be ignored and
IndexPol will be set to Rising if the IndxSrc bit field is set to INDXSRC_SOFT.

Value Symbolic Name Description

 0-1 CLKSRC_COUNTER Applicable to A and B counters. Selects ENC_C and ENC_D as clock signal sources.
Quadrature-encoded, two-phase clocks are connected to ENC_C and ENC_D. In the case
of single-phase clock sources, the clock signal connects to ENC_C and the direction
control signal connects to ENC_D.

 2 CLKSRC_TIMER Applicable to A and B counters. Selects the 2 MHz system clock as the clock source.
Count direction is controlled by the ClkPol bit field.

 3 CLKSRC_EXTENDER Applicable to B counters only. Selects the overflow output from the paired A counter as
the clock source, and ENC_D as the direction control signal. If this is specified for an A
counter when calling S626_CounterModeSet(), the configuration request will be
rejected and the counter will not be configured to the new settings.

Value Symbolic Name Trigger Event

Sensoray Instruction Manual 31 Model 626 Driver for Windows

4.6.2.7 ClkPol

ClkPol has a functionality that is determined by the counter operating mode (which is implicitly specified by ClkSrc). In the
Counter and Extender modes, ClkPol specifies the clock edge to be used for clocking the counter core. In the Timer mode,
ClkPol specifies the count direction.

When the counter is operating in Timer mode, ClkPol may be set to one of the following values:

When the counter is operating in Counter or Extender mode, ClkPol may be set to one of the following values:

4.6.2.8 ClkMult

ClkMult specifies whether the frequency of the clock source (specified by ClkSrc) will be multiplied by 1, 2 or 4 before
being applied to the counter core.

The 1x multiplier is legal in all operating modes, and the 2x and 4x multipliers are valid only in the Counter mode. The 1x
multiplier will be programmed by default if a multiplier is specified that is invalid for the specified operating mode. Although
they are valid in the Counter mode, the 2x and 4x multipliers should not be used with counters that are driven by single-phase
clock sources as this will cause unpredictable behavior.

ClkMult may be set to one of the following values:

4.6.2.9 ClkEnab

ClkEnab specifies the conditions that enable counting to occur. Count enabling conditions may be programmed by means of
the ClkEnab bit in conjunction with S626_CounterModeSet(), or alternatively, via S626_CounterEnableSet().

ClkEnab may be set to one of the following values:

Value Symbolic Name Description

 0 CNTDIR_UP Programs the counter to count up.

 1 CNTDIR_DOWN Programs the counter to count down.

Value Symbolic Name Description

 0 CLKPOL_POS Selects the rising (inactive-to-active) clock edge transition.

 1 CLKPOL_NEG Selects the falling (active-to-inactive) clock edge transition.

Value Symbolic Name Description

 0 CLKMULT_4X Valid only in Counter mode. Counter will count in response to any edge that occurs on either of the
quadrature clock inputs. Use this multiplier only with two-phase, quadrature-encoded clock sources.

 1 CLKMULT_2X Valid only in Counter mode. Counter will count in response to any edge that occurs on the phase B
clock input. Use this multiplier only with two-phase, quadrature-encoded clock sources.

 2-3 CLKMULT_1X Valid in all modes. Counter will count in response to an inactive-to-active edge on the selected clock
input.

Value Symbolic Name Description

 0 CLKENAB_ALWAYS Counting is always enabled, regardless of the index state.

 1 CLKENAB_INDEX Counting is enabled only when the index is active.

Sensoray Instruction Manual 32 Model 626 Driver for Windows

4.6.3 S626_CounterModeSet()

Function: Programs a counter’s operational configuration.

Prototype: VOID S626_CounterModeSet(HBD hbd, WORD chan, WORD options);

Returns: None.

Notes: Always call this function first to establish a counter’s operating configuration before attempting to modify any
independently programmable attributes. This is necessary because S626_CounterModeSet() initializes most
of the counter configuration attributes to either their default values or to the values specified by options.

This function clears any captured index or overflow events on the target counter channel and sets the counter
interrupt source to None, thereby disabling interrupts. Out of all the remaining programmable counter
configuration options, only the latch source (Section 4.6.8), which is shared by the A and B counters of the
associated counter pair, is left unmodified.

S626_CounterModeSet() will reject the configuration request and preserve the existing counter
configuration if any illegal options are specified. After calling this function, S626_CounterModeGet() may
be called to determine whether the counter was successfully configured.

Example: See “Counter Programming Examples” on page 38.

4.6.4 S626_CounterModeGet()

Function: Returns a counter’s operational configuration.

Prototype: WORD S626_CounterModeGet(HBD hbd, WORD chan);

Returns: WORD value, organized as a COUNTER_SETUP structure. See Section 4.6.2 for details.

Notes: S626_CounterModeGet() provides a mechanism for retrieving programmed counter configuration attributes.
This can be useful in several situations:

? Confirms that a counter was successfully configured by S626_CounterModeSet().

? In battery-backed applications, this function can be used to determine the current counter configurations
following a power failure, thereby enabling counter operations to resume after a system power failure has
occurred.

? Serves as a diagnostic tool for verifying hardware operation during application development.

? Provides support for application run-time diagnostics.

? Eliminates the need for applications to maintain storage for counter configuration information.

Parameter Type Description

hbd HBD Board Handle.

chan WORD Counter channel number. Legal values are 0 through 5, as described in Section 3.3.
Specifying a channel number greater than 5 will cause the ERR_ILLEGAL_PARM
error flag to be set.

options WORD Configuration options, organized as a COUNTER_SETUP structure. See Section
4.6.2 for details.

Parameter Type Description

hbd HBD Board Handle.

chan WORD Counter channel number. Legal values are 0 through 5, as described in Section 3.3.
Specifying a channel number greater than 5 will cause the ERR_ILLEGAL_PARM
error flag to be set.

Sensoray Instruction Manual 33 Model 626 Driver for Windows

Example: //
// Display the current clock multiplier for board 0, counter 2B.
//

switch ((S626_CounterModeGet(0, 5) >> 1) & 3)
{
 case 0: printf("Mult is 4x.\n"); break;
 case 1: printf("Mult is 2x.\n"); break;
 case 2: printf("Mult is 1x.\n"); break;
}

4.6.5 S626_CounterEnableSet()

Function: Specifies the conditions that enable counting to occur.

Prototype: VOID S626_CounterEnableSet(HBD hbd, WORD chan, WORD cond);

The cond argument may be set to one of the following values:

Returns: None.

Notes: Count enabling conditions may also be programmed by means of S626_CounterModeSet(). The
S626_CounterModeGet() function can be used to determine the count enabling conditions currently in effect.

Example: See “Counter Programming Examples” on page 38.

4.6.6 S626_CounterPreload()

Function: Writes a value to a counter’s preload register.

Prototype: VOID S626_CounterPreload(HBD hbd, WORD chan, DWORD value);

Returns: None.

Parameter Type Description

hbd HBD Board Handle.

chan WORD Counter channel number. Legal values are 0 through 5, as described in Section 3.3.
Specifying a channel number greater than 5 will cause the ERR_ILLEGAL_PARM
error flag to be set.

cond WORD Specifies the conditions that enable counting to occur. See below for details.

Value Symbolic Name Description

 0 CLKENAB_ALWAYS Counting is always enabled, regardless of the index state.

 1-65535 CLKENAB_INDEX Counting is enabled only when the index is active.

Parameter Type Description

hbd HBD Board Handle.

chan WORD Counter channel number. Legal values are 0 through 5, as described in Section
3.3. Specifying a channel number greater than 5 will cause the
ERR_ILLEGAL_PARM error flag to be set.

value DWORD Value to be written to the preload register. Only the least significant 24 bits of
this value are written to the preload register; the high byte is ignored.

Sensoray Instruction Manual 34 Model 626 Driver for Windows

Notes: This function stores a value in a counter’s preload register, but it does not transfer the value to the counter core.
The preload register is transferred to the counter core only in response to a predefined Load Trigger event. See
Section 4.6.7 for details.

Example: See “Counter Programming Examples” on page 38.

4.6.7 S626_CounterLoadTrigSet()

Function: Selects the events that will cause a counter’s preload register to be transferred to its counter core.

Prototype: VOID S626_CounterLoadTrigSet(HBD hbd, WORD chan, WORD events);

The events argument specifies the event or events that will trigger the transfer of data from the preload register
into the counter core. The meaning of events depends on whether an A or B counter is being addressed.

In the case of A counters, events may be set to one of the following values:

In the case of B counters, events may be set to one of the following values:

Returns: None.

Notes: Preload trigger events may also be programmed by means of S626_CounterModeSet(). The
S626_CounterModeGet() function can be used to determine the preload trigger events currently in effect.

Example: See “Counter Programming Examples” on page 38.

Parameter Type Description

hbd HBD Board Handle.

chan WORD Counter channel number. Legal values are 0 through 5, as described in Section 3.3.
Specifying a channel number greater than 5 will cause the ERR_ILLEGAL_PARM
error flag to be set.

events WORD Indicates the events that trigger a transfer of data from the preload register to the counter
core. See below for details.

Value Symbolic Name Trigger Event

 0 LOADSRC_INDX Counter A index.

 1 LOADSRC_OVER Counter A overflow.

 2 LOADSRCA_NONE Disabled.

 3 LOADSRC_NONE Disabled.

 4-65535 --- Illegal. This will cause the ERR_ILLEGAL_PARM error flag to be set.

Value Symbolic Name Trigger Event

 0 LOADSRC_INDX Counter B index.

 1 LOADSRC_OVER Counter B overflow.

 2 LOADSRCB_OVERA Counter A overflow.

 3 LOADSRC_NONE Disabled.

 4-65535 --- Illegal. This will cause the ERR_ILLEGAL_PARM error flag to be set.

Sensoray Instruction Manual 35 Model 626 Driver for Windows

4.6.8 S626_CounterLatchSourceSet()

Function: Selects the events that will cause a counter’s contents to be transferred to its latch register.

Prototype: VOID S626_CounterLatchSourceSet(HBD hbd, WORD chan, WORD events);

The events argument specifies which events will act as triggers for transferring the counts from the counter core
into the latch register. This argument may be set to one of the following values:

Returns: None.

Notes: This function selects the latch trigger for both the A and B counters of a counter pair. When the latch trigger is
programmed for an A (or B) counter, the paired B (or A) counter is also programmed at the same time.

Example: See “Counter Programming Examples” on page 38.

4.6.9 S626_CounterReadLatch()

Function: Read a counter’s latch register.

Prototype: DWORD S626_CounterReadLatch(HBD hbd, WORD chan);

Returns: DWORD consisting of the value stored in the counter latch register. The returned number will have a value
between 0x00000000 and 0x00FFFFFF, inclusive.

Notes: Each counter latch register is shared by both the A and B counter belonging to a counter pair. Depending on the
programming of the counter latch trigger source, various events will cause the counter core to be transferred to the
counter latch register. See Section 4.6.8 for details.

Example: See “Counter Programming Examples” on page 38.

Parameter Type Description

hbd HBD Board Handle.

chan WORD Counter channel number. Legal values are 0 through 5, as described in Section
3.3. Specifying a channel number greater than 5 will cause the
ERR_ILLEGAL_PARM error flag to be set.

events WORD Indicates the events that trigger a transfer of data from the counter core to the
latch register. See below for details.

Value Symbolic Name Description

 0 LATCHSRC_AB_READ Counter A or B latched when read by S626_CounterReadLatch().

 1 LATCHSRC_A_INDXA Counter A latched in response to counter A index.

 2 LATCHSRC_B_INDXB Counter B latched in response to counter B index.

 3 LATCHSRC_B_OVERA Counter B latched in response to counter A overflow.

4-65535 --- Illegal. This will cause the ERR_ILLEGAL_PARM error flag to be set.

Parameter Type Description

hbd HBD Board Handle.

chan WORD Counter channel number. Legal values are 0 through 5, as described in Section 3.3.
Specifying a channel number greater than 5 will cause the ERR_ILLEGAL_PARM
error flag to be set.

Sensoray Instruction Manual 36 Model 626 Driver for Windows

4.6.10 S626_CounterCapStatus()

Function: Returns event capture flags for all counter channels.

Prototype: WORD S626_CounterCapStatus(HBD hbd);

Returns: WORD value containing Overflow and Index capture flags for all counter channels. This value is structured as a
set of bit fields as shown in Figure 4.

Figure 4: WORD value returned by S626_CounterCapStatus().

Each capture flag occupies a one-bit field in the returned WORD value. A logic one in a bit field indicates that the
associated event is captured, while a zero in the bit field indicates that the associated event has not been captured.
For example, a logic one in bit 7 indicates that an Index edge was detected on counter 1B.

Notes: The four least-significant bits of the returned value is always zero. This enables rapid testing for captured events
on all counters.

Counter event capturing is always enabled. A counter’s event capture flags are reset to zero in response to any of
the following actions:

? S626_CounterModeSet() is called to set the counter’s operating mode.

? S626_CounterCapFlagsReset() is called to explicitly reset the counter’s capture flags.

? S626_CounterIntSourceSet() is called to select the counter’s interrupt source.

Example: See “Counter Programming Examples” on page 38.

4.6.11 S626_CounterCapFlagsReset()

Function: Resets a counter’s event capture flags.

Prototype: VOID S626_CounterCapFlagsReset(HBD hbd, WORD chan);

Returns: None.

Notes: This function resets the Overflow and Index event capture flags associated with the target counter (see Figure 4).
In cases where either (or both) of these events flags are selected as interrupt sources, this function will negate the
pending interrupt service request.

Example: See “Counter Programming Examples” on page 38, and “Example: Counter Interrupts” on page 52.

Parameter Type Description

hbd HBD Board Handle.

Parameter Type Description

hbd HBD Board Handle.

chan WORD Counter channel number. Legal values are 0 through 5, as described in Section 3.3.
Specifying a channel number greater than 5 will cause the ERR_ILLEGAL_PARM
error flag to be set.

5 4 3 2 1 0
Over

11 10 9 8 7 615 14 13 12

 2B
Over
 2A

Over
 1B

Over
 1A

Over
 0B

Over
 0A

Indx
 2B

Indx
 2A

Indx
 1B

Indx
 1A

Indx
 0B

Indx
 0A 0 0 0 0

Sensoray Instruction Manual 37 Model 626 Driver for Windows

4.6.12 S626_CounterSoftIndex()

Function: Toggles a counter’s index.

Prototype: VOID S626_CounterSoftIndex(HBD hbd, WORD chan);

Returns: None.

Notes: S626_CounterSoftIndex() briefly inverts a counter channel’s index so as to produce an index pulse. This
has the effect of simulating a hardware pulse on the currently selected index input. This can be useful for triggering
index-controlled actions, such as counter preloading or latching, under software control.

This function does not physically drive the selected index input signal. Instead, it modifies an internal, buffered
image of the applied physical input.

Example: See “Counter Programming Examples” on page 38.

4.6.13 S626_CounterIntSourceSet()

Function: Specifies the captured events that are permitted to cause interrupts.

Prototype: VOID S626_CounterIntSourceSet(HBD hbd, WORD chan, WORD events);

The events parameter may be set to one of the following values:

Returns: None.

Notes: In addition to selecting the events that can cause interrupts, this function also resets the Index and Overflow capture
flags for the target counter channel. This prevents interrupts from occurring immediately in case interrupts are
being enabled for events that have already been captured.

To enable counter interrupts, this function must be called after S626_CounterModeSet() has been called, as
S626_CounterModeSet() automatically disables all interrupts for the target counter channel.

Parameter Type Description

hbd HBD Board Handle.

chan WORD Counter channel number. Legal values are 0 through 5, as described in Section 3.3.
Specifying a channel number greater than 5 will cause the ERR_ILLEGAL_PARM
error flag to be set.

Parameter Type Description

hbd HBD Board Handle.

chan WORD Counter channel number. Legal values are 0 through 5, as described in Section 3.3.
Specifying a channel number greater than 5 will cause the ERR_ILLEGAL_PARM
error flag to be set.

events WORD Specifies the events that will cause interrupts. See below for details.

Value Symbolic Name Captured events that will cause interrupts.

 0 INTSRC_NONE None. Interrupts will be disabled.

 1 INTSRC_OVER Counter overflow.

 2 INTSRC_INDX Counter index.

 3 INTSRC_ANY Counter overflow or index.

4-65535 --- Illegal. This will cause the ERR_ILLEGAL_PARM error flag to be set.

Sensoray Instruction Manual 38 Model 626 Driver for Windows

Example: See Section 4.7, and “Example: Counter Interrupts” on page 52

4.7 Counter Programming Examples

4.7.1 Constants Used in Examples

Various numerical constants are referenced by the counter programming examples. Instead of duplicating constants in each
example, all of the constants have been gathered here as they would be in an application include file. The following source code
defines most of the constants used in the programming examples.

///
// Numerical constants used by the counter programming examples.
///

 // LoadSrc values:
#define LOADSRC_INDX 0 // Preload core in response to Index.
#define LOADSRC_OVER 1 // Preload core in response to Overflow.
#define LOADSRCB_OVERA 2 // Preload B core in response to A Overflow.
#define LOADSRC_NONE 3 // Never preload core.
 // IntSrc values:
#define INTSRC_NONE 0 // Interrupts disabled.
#define INTSRC_OVER 1 // Interrupt on Overflow.
#define INTSRC_INDX 2 // Interrupt on Index.
#define INTSRC_BOTH 3 // Interrupt on Index or Overflow.
 // LatchSrc values:
#define LATCHSRC_AB_READ 0 // Latch on read.
#define LATCHSRC_A_INDXA 1 // Latch A on A Index.
#define LATCHSRC_B_INDXB 2 // Latch B on B Index.
#define LATCHSRC_B_OVERA 3 // Latch B on A Overflow.
 // IndxSrc values:
#define INDXSRC_HARD 0 // Hardware or software index.
#define INDXSRC_SOFT 1 // Software index only.
 // IndxPol values:
#define INDXPOL_POS 0 // Index input is active high.
#define INDXPOL_NEG 1 // Index input is active low.
 // ClkSrc values:
#define CLKSRC_COUNTER 0 // Counter mode.
#define CLKSRC_TIMER 2 // Timer mode.
#define CLKSRC_EXTENDER 3 // Extender mode.
 // ClkPol values:
#define CLKPOL_POS 0 // Counter/Extender clock is active high.
#define CLKPOL_NEG 1 // Counter/Extender clock is active low.
#define CNTDIR_UP 0 // Timer counts up.
#define CNTDIR_DOWN 1 // Timer counts down.
 // ClkEnab values:
#define CLKENAB_ALWAYS 0 // Clock always enabled.
#define CLKENAB_INDEX 1 // Clock is enabled by index.
 // ClkMult values:
#define CLKMULT_4X 0 // 4x clock multiplier.
#define CLKMULT_2X 1 // 2x clock multiplier.
#define CLKMULT_1X 2 // 1x clock multiplier.
 // Bit Field positions in COUNTER_SETUP word:
#define BF_LOADSRC 9 // Preload trigger.
#define BF_INDXSRC 7 // Index source.
#define BF_INDXPOL 6 // Index polarity.
#define BF_CLKSRC 4 // Clock source.
#define BF_CLKPOL 3 // Clock polarity/count direction.
#define BF_CLKMULT 1 // Clock multiplier.
#define BF_CLKENAB 0 // Clock enable.
 // Counter channel numbers:

Sensoray Instruction Manual 39 Model 626 Driver for Windows

#define CNTR_0A 0 // Counter 0A.
#define CNTR_1A 1 // Counter 1A.
#define CNTR_2A 2 // Counter 2A.
#define CNTR_0B 3 // Counter 0B.
#define CNTR_1B 4 // Counter 1B.
#define CNTR_2B 5 // Counter 2B.

// In addition to the constants listed above, the following code macros are useful.
// Counter overflow/index event flag bit masks for S626_CounterCapStatus():
#define INDXMASK(C) (1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 + 4)))
#define OVERMASK(C) (1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))

4.7.2 Example: Periodic Interrupt Generator

This example shows how to program a counter to generate interrupts at periodic intervals.

A function, GenPeriodicInts(), encapsulates the complexities of configuration programming and provides a standardized
method that works with any counter. This function will configure any of the six counter channels to generate interrupts at
intervals specified by the milliseconds argument.

The target counter is configured as a down-counting timer. Clock enabling is controlled by the index, which in turn is controlled
exclusively by software; the hardware index input is disabled. When the counter counts down to zero, it automatically reloads
from the preload register and generates an interrupt service request via the counter overflow event capture.

///
// Configure a counter to generate periodic interrupts.
///

VOID GenPeriodicInts(HBD hbd, WORD chan, DWORD milliseconds)
{
 // Set counter operating mode.
 S626_CounterModeSet(hbd, chan,
 (LOADSRC_INDX << BF_LOADSRC) | // Index causes preload.
 (INDXSRC_SOFT << BF_INDXSRC) | // Hardware index disabled.
 (CLKSRC_TIMER << BF_CLKSRC) | // Operating mode is Timer.
 (CNTDIR_DOWN << BF_CLKPOL) | // Count direction is Down.
 (CLKMULT_1X << BF_CLKMULT) | // Clock multiplier is 1x.
 (CLKENAB_INDEX << BF_CLKENAB)); // Counting is initially disabled.

 // Initialize PreLoad value to match the specified time interval. Since the counter
 // clock is fixed at 2 MHz, this is computed by multiplying milliseconds by 2,000.
 S626_CounterPreload(hbd, chan, milliseconds * 2000);

 // Generate a soft index to force transfer of PreLoad value into counter core.
 S626_CounterSoftIndex(hbd, chan);

 // Enable transfer of PreLoad value to counter in response to overflow. This
 // will cause the initial counts to reload every time the counts reach zero.
 S626_CounterLoadTrigSet(hbd, chan, LOADSRC_OVER);

 // Enable the counter to generate interrupt requests upon captured overflow.
 S626_CounterIntSourceSet(hbd, chan, INTSRC_OVER);

 // Enable the timer. The first interrupt will occur after the specified
 // time interval elapses.
 S626_CounterEnableSet(hbd, chan, CLKENAB_ALWAYS);
}

This code shows how to use GenPeriodicInts() to activate periodic interrupts:

Sensoray Instruction Manual 40 Model 626 Driver for Windows

// Configure board 0, counter 0A to generate an interrupt every 50 milliseconds.
GenPeriodicInts(0, CNTR_0A, 50);

4.7.3 Example: Encoder Interface

This example shows how to program a counter to work with an incremental encoder.

Incremental encoders produce two clock signals that have a 90 degree phase difference (i.e., quadrature-encoded), from which
the counter core derives its count clock and direction control signals. Often, encoder applications also utilize an index signal that
is used for registering a reference position.

In this example, the counter clock inputs is driven by the encoder’s quadrature clock. The encoder index input is programmed to
reset the counter to zero and source an interrupt request when the index switches to its active state. The counter is configured so
that encoder counts may be read by the application at any time.

///
// Configure board 0, counter 2A as a quadrature counter. An active Index will reset
// the counter core to zero and generate an interrupt request.
///

// Set counter operating mode.
S626_CounterModeSet(0, CNTR_2A,
 (LOADSRC_INDX << BF_LOADSRC) | // Index causes preload.
 (INDXSRC_HARD << BF_INDXSRC) | // Hardware index is enabled.
 (INDXPOL_POS << BF_INDXPOL) | // Active high index.
 (CLKSRC_COUNTER << BF_CLKSRC) | // Operating mode is Counter.
 (CLKPOL_POS << BF_CLKPOL) | // Active high clock.
 (CLKMULT_4X << BF_CLKMULT) | // Clock multiplier is 4x.
 (CLKENAB_ALWAYS << BF_CLKENAB)); // Counting is always enabled.

// Initialize preload value to zero so that the counter core will be set
// to zero upon the occurance of an Index.
S626_CounterPreload(0, CNTR_2A, 0);

// Enable latching of accumulated counts on demand. This assumes that
// there is no conflict with the latch source used by paired counter 2B.
S626_CounterLatchSourceSet(0, CNTR_2A, LATCHSRC_AB_READ);

// Enable the counter to generate interrupt requests upon index.
S626_CounterIntSourceSet(0, CNTR_2A, INTSRC_INDX);

As shown in below, the accumulated encoder counts may be read at any time. To ensure that a legitimate counts value will be
displayed, at least one index must occur before executing this statement.

// Read and display current encoder position.
printf("Encoder position = %d\n", S626_CounterReadLatch(0, CNTR_2A));

4.7.4 Example: Simple Event Counter

This example shows how to program a counter to count pulses from a single-phase clock source, such as a tachometer.

In this example, the counter clock input is driven by an external, single-phase signal source and the count direction is fixed so
that the counter core increments once per input pulse. The counter’s hardware index input is disabled so that the index is
exclusively software-driven. The counter is configured so that event counts may be read by the application at any time.

///
// Configure board 0, counter 2A as an event counter.
///

Sensoray Instruction Manual 41 Model 626 Driver for Windows

// Set counter operating mode.
S626_CounterModeSet(0, CNTR_2A,
 (LOADSRC_INDX << BF_LOADSRC) | // Preload in response to index.
 (INDXSRC_SOFT << BF_INDXSRC) | // Hardware index disabled.
 (CLKSRC_COUNTER << BF_CLKSRC) | // Operating mode is Counter.
 (CLKPOL_POS << BF_CLKPOL) | // Active high clock.
 (CLKMULT_1X << BF_CLKMULT) | // Clock multiplier is 1x.
 (CLKENAB_ALWAYS << BF_CLKENAB)); // Counting is always enabled.

// Initialize preload value to zero so that the counter core will be set
// to zero upon the occurance of a software-induced index.
S626_CounterPreload(0, CNTR_2A, 0);

// Enable latching of accumulated counts on demand. This assumes that
// there is no conflict with the latch source used by paired counter 2B.
S626_CounterLatchSourceSet(0, CNTR_2A, LATCHSRC_AB_READ);

// Generate a soft index to initialize the counts to zero.
S626_CounterSoftIndex(hbd, CNTR_2A);

The accumulated event count may be read by executing the following statement:

// Read and display the accumulated event counts.
printf("Events counted = %d\n", S626_CounterReadLatch(0, CNTR_2A));

Counts may be reset to zero by executing the following statement:

// Reset the accumulated counts.
S626_CounterSoftIndex(hbd, CNTR_2A);

4.7.5 Example: Pulse Width Measurement

This example shows how to use a counter to measure pulse width. In this example, the counter is configured to measure positive
pulses, although it is a simple matter to reconfigure it to measure negative pulses.

The counter is configured as a timer with a hardware-gated clock. The counter’s hardware index input, which connects to the
signal that is to be measured, gates the counter’s clock so that counting is enabled only during input pulses. In addition to the
level-sensitive clock gating function, the index input also performs the following edge-sensitive functions in response to an input
pulse leading edge:

? Transfers the previously acquired pulse width data to the latch register.

? Preloads the counter core with zeros to begin the new acquisition.

? Captures a counter Index Event.

? Generates an interrupt request.

//
// Measure positive pulse width using board 0, counter 2A.
//

// Set counter operating mode.
S626_CounterModeSet(0, CNTR_2A,
 (LOADSRC_INDX << BF_LOADSRC) | // Preload in response to index.
 (INDXSRC_HARD << BF_INDXSRC) | // Pulse signal drives index.
 (INDXPOL_POS << BF_INDXPOL) | // Active high pulse signal.
 (CLKSRC_TIMER << BF_CLKSRC) | // Operating mode is Timer.
 (CNTDIR_UP << BF_CLKPOL) | // Count direction is Up.
 (CLKMULT_1X << BF_CLKMULT) | // Clock multiplier is 1x.
 (CLKENAB_INDEX << BF_CLKENAB)); // Counting is gated by index.

Sensoray Instruction Manual 42 Model 626 Driver for Windows

// Initialize preload value to zero so that the counter core will be set
// to zero upon the occurance of a hardware index.
S626_CounterPreload(0, CNTR_2A, 0);

// Enable latching of accumulated counts in response to an index. This assumes that
// there is no conflict with the latch source used by paired counter 2B.
S626_CounterLatchSourceSet(0, CNTR_2A, LATCHSRC_A_INDXA);

After configuring the counter, the application waits for an index event. For the sake of clarity, the index event is detected by
means of a polling loop, whereas in a real application this would more likely be implemented with interrupts. When an index
event is captured, the acquired pulse width data is fetched from the counter’s latch register. Data should be discarded for the first
index event because valid data is not yet available from a previous acquisition. The following code shows the polling loop.

// Ignore the data value from the first event.
bool IsFirst = true;

for (; ;)
{
 // Wait for a captured index event on counter 2A, then clear its capture flag.
 while (!(S626_CounterCapStatus(0) & INDXMASK(CNTR_2A)));
 S626_CounterCapFlagsReset(0, CNTR_2A);

 // Read and display measured pulse width. Since timer is clocked by a 2 MHz source,
 // accumulated count is divided by 2 to convert pulse width to microseconds units.
 if (!IsFirst)
 printf("Pulse width (µs) = %d\n", S626_CounterReadLatch(0, CNTR_2A) >> 1);

 IsFirst = false;
}

4.7.6 Example: Frequency Counter

This example shows how to use a pair of counters to measure frequency.

A function, CreateFreqCounter(), is implemented to encapsulate the complexities of configuration programming and to
provide a standardized method that works with any counter pair. This function will configure any of the three counter channel
pairs to measure frequency.

CounterA serves as an acquisition gate generator. The gate time is determined by the value in the counterA preload register. The
end of the gate interval is denoted by an overflow on counterA.

CounterB’s clock input is connected to the external frequency source; this counter continuously counts pulses from the
frequency source. Upon overflow of counterA, counterB transfers its counts to the latch register and resets to zero to begin the
next acquisition.

//
// Configure an A/B counter pair to measure frequency.
// The counter pair is specified by the A member of the pair.
// Acquisition gate time is specified in milliseconds.
//

VOID CreateFreqCounter(HBD hbd, WORD CounterA, WORD GateTime)
{
 // Set operating mode for counterA.
 S626_CounterModeSet(hbd, CounterA,
 (LOADSRC_OVER << BF_LOADSRC) | // Preload upon overflow.
 (INDXSRC_SOFT << BF_INDXSRC) | // Disable hardware index.
 (CLKSRC_TIMER << BF_CLKSRC) | // Operating mode is Timer.
 (CNTDIR_DOWN << BF_CLKPOL) | // Count direction is Down.
 (CLKMULT_1X << BF_CLKMULT) | // Clock multiplier is 1x.
 (CLKENAB_INDEX << BF_CLKENAB)); // Counting is initially disabled.

Sensoray Instruction Manual 43 Model 626 Driver for Windows

 // Set counterA core and preload value to the desired gate time. Since the counter
 // clock is fixed at 2 MHz, this is computed by multiplying milliseconds by 2,000.
 S626_CounterPreload(hbd, CounterA, GateTime * 2000);
 S626_CounterSoftIndex(hbd, CounterA);

 // Enable preload of counterA in response to overflow. This causes the timer to
 // restart automatically when its counts reach zero.
 S626_CounterLoadTrigSet(hbd, CounterA, LOADSRC_OVER);

 // Set operating mode for counterB.
 S626_CounterModeSet(0, CounterA + 3,
 (LOADSRCB_OVERA << BF_LOADSRC) | // Preload zeros upon leading gate edge.
 (INDXSRC_SOFT << BF_INDXSRC) | // Hardware index is disabled.
 (CLKSRC_COUNTER << BF_CLKSRC) | // Operating mode is Counter.
 (CLKPOL_POS << BF_CLKPOL) | // Clock is active high.
 (CLKMULT_1X << BF_CLKMULT) | // Clock multiplier is 1x.
 (CLKENAB_ALWAYS << BF_CLKENAB)); // Clock is always enabled.

 // Initialize counterB’s preload value to zero so that counterB core will be set
 // to zero in response to trailing gate edge (counter A overflow).
 S626_CounterPreload(0, CounterA + 3, 0);

 // Enable latching of counterB’s acquired frequency data in response to trailing
 // gate edge (counterA overflow).
 S626_CounterLatchSourceSet(0, CounterA + 3, LATCHSRC_B_OVERA);

 // Enable the acquisition gate generator.
 S626_CounterEnableSet(hbd, CounterA, CLKENAB_ALWAYS);
}

After configuring the counter pair, the application waits for an overflow event on counter A. For the sake of clarity, the overflow
event is detected by means of a polling loop, whereas in a real application this would more likely be implemented with interrupts
(see Section 4.11.2 for an implementation that uses interrupts).

When a counter A overflow event is captured, the acquired frequency data is fetched from the latch register. Data should be
discarded for the first overflow event because data is not yet available from a previous acquisition. The following code shows
the counter initialization and polling loop.

#define COUNTER CNTR_0A // Counter A (and implicitly, B) channel to use.

// Configure counter A/B pair as a frequency counter, gate time = 1 second.
CreateFreqCounter(0, COUNTER, 1000);

// Ignore the data value from the first gate period.
bool IsFirst = true;

for (; ;)
{
 // Wait for a captured overflow event on counter A, then clear its capture flag.
 while (!(S626_CounterCapStatus(0) & OVERMASK(COUNTER)));
 S626_CounterCapFlagsReset(0, COUNTER);

 // Read and display measured frequency from counter B.
 if (!IsFirst)
 printf("Frequency (Hz) = %8d.\r", S626_CounterReadLatch(0, COUNTER + 3));

 IsFirst = false;
}

Sensoray Instruction Manual 44 Model 626 Driver for Windows

4.8 Watchdog Timer Functions

4.8.1 S626_WatchdogPeriodSet()

Function: Programs the watchdog timer interval.

Prototype: VOID S626_WatchdogPeriodSet(HBD hbd, WORD interval);

Returns: None.

Notes: This function establishes the watchdog timer interval. The watchdog timer interval is defined as the maximum
elapsed time between calls to S626_WatchdogReset() that ensures no watchdog timeouts.

When the watchdog timer is enabled, the application must call S626_WatchdogReset() at a minimum rate
determined by the watchdog interval in order to prevent a watchdog timeout.

Example: ///
// Set the watchdog timer interval on board number 0 to 10 seconds.
///

#define WD_INTERVAL_SEC_10 3

S626_WatchdogPeriodSet(0, WD_INTERVAL_SEC_10);

4.8.2 S626_WatchdogPeriodGet()

Function: Returns the programmed watchdog timer interval.

Prototype: WORD S626_WatchdogPeriodGet(HBD hbd);

Returns: WORD containing one of the following enumerated watchdog interval values:

 0 = 0.125 seconds,
 1 = 0.5 seconds,
 2 = 1.0 second,
 3 = 10 seconds.

Example: //
// Fetch and display the watchdog interval from board number 0.
//

printf("Board 0 watchdog interval = ");

switch (S626_WatchdogPeriodGet(0))
{
case 0: printf("0.125 seconds.\n");

Parameter Type Description

hbd HBD Board Handle.

interval WORD Enumerated watchdog time interval. Takes one of the following values:
 0 = 0.125 seconds,
 1 = 0.5 seconds,
 2 = 1.0 second,
 3 = 10 seconds.

Parameter Type Description

hbd HBD Board Handle.

Sensoray Instruction Manual 45 Model 626 Driver for Windows

case 1: printf("0.5 seconds.\n");
case 2: printf("1 second.\n");
case 3: printf("10 seconds.\n");
}

4.8.3 S626_WatchdogEnableSet()

Function: Enables/disables the watchdog timer.

Prototype: VOID S626_WatchdogEnableSet(HBD hbd, WORD enable);

Returns: None.

Notes: This function controls the enabling of the watchdog timer. Prior to enabling the watchdog timer, the watchdog
time interval should be programmed by calling S626_WatchdogPeriodSet().

Example: //
// On board number 0, set the watchdog timer interval to 1.0 seconds and
// then enable the watchdog timer.
//

#define WD_INTERVAL_SEC_1 2

S626_WatchdogPeriodSet(0, WD_INTERVAL_SEC_1); // Set WD interval to 1 sec.
S626_WatchdogEnableSet(0, true); // Enable the WD timer.

4.8.4 S626_WatchdogEnableGet()

Function: Returns the state of the watchdog timer enable.

Prototype: WORD S626_WatchdogEnableGet(HBD hbd);

Returns: WORD value indicating whether the watchdog timer is enabled. The returned value is zero if the watchdog timer is
disabled, or non-zero if the timer is enabled.

Example: //
// Display a message indicating whether the board 0 watchdog timer is enabled.
//

printf(S626_WatchdogEnableGet() ? "Watchdog enabled\n" : "Watchdog disabled\n");

Parameter Type Description

hbd HBD Board Handle.

enable WORD Specifies whether watchdog timer is to be enabled or disabled. Set to zero to
disable the timer, or to any non-zero value to enable the timer.

Parameter Type Description

hbd HBD Board Handle.

Sensoray Instruction Manual 46 Model 626 Driver for Windows

4.8.5 S626_WatchdogReset()

Function: Resets the watchdog timer.

Prototype: VOID S626_WatchdogReset(HBD hbd);

Returns: None.

Notes: After the watchdog interval has been programmed by S626_WatchdogPeriodSet() and the watchdog timer
has been enabled by S626_WatchdogEnableSet(), this function must be called repeatedly to prevent the
watchdog timer from timing out. To guarantee that the watchdog timer will not timeout, the maximum elapsed
time between any two calls to S626_WatchdogReset() must not exceed the time interval that was last
programmed by S626_WatchdogPeriodSet().

Example: //
// On board number 2, reset the watchdog timer to prevent a watchdog timeout.
//

S626_WatchdogReset(2); // "Tag" (reset) the watchdog timer.

4.8.6 S626_WatchdogTimeout()

Function: Returns the watchdog timeout status.

Prototype: WORD S626_WatchdogTimeout(HBD hbd);

Returns: WORD indicating whether the watchdog timer has timed out. The returned value is zero if no timeout has
occurred, or a non-zero value if a timeout has transpired.

Notes: This function is useful only if the watchdog timer output has not been routed to the PCI bus hardware reset signal.
If the watchdog output is routed to the PCI reset signal, a watchdog timeout will generate a system-wide PCI bus
reset, thereby returning the Model 626 watchdog timer to its default, disabled state and clearing the watchdog
timeout status indicator.

Example: //
// Display a message indicating whether the board 0 watchdog has timed out.
//

printf(S626_WatchdogTimeout() ? "Watchdog timeout\n" : "No watchdog timeout\n");

Parameter Type Description

hbd HBD Board Handle.

Parameter Type Description

hbd HBD Board Handle.

Sensoray Instruction Manual 47 Model 626 Driver for Windows

4.9 Battery Functions

4.9.1 S626_BackupEnableSet()

Function: Enables/disables battery backup of the counter circuits.

Prototype: VOID S626_BackupEnableSet(HBD hbd, WORD enable);

Returns: None.

Notes: An optional, external battery must be connected to the board to supply backup power. Refer to the Model 626
hardware manual for details.

Example: //
// Enable battery backup of the counter circuits on board number 0.
//

S626_BackupEnableSet(0, true);

4.9.2 S626_BackupEnableGet()

Function: Returns the state of the enable for battery backup.

Prototype: WORD S626_BackupEnableGet(HBD hbd);

Returns: WORD value indicating whether battery backup is enabled for the counter circuitry. The return value is zero if
battery backup is disabled, or non-zero if battery backup is enabled.

Notes: An optional, external battery must be connected to the board to supply backup power. Refer to the Model 626
hardware manual for details.

Example: //
// Display the state of the battery backup enable on board number 0.
//

printf(S626_BackupEnableGet(0) ? "Backup enabled.\n" : "Backup disabled.\n");

Parameter Type Description

hbd HBD Board Handle.

enable WORD Indicates whether battery backup is to be enabled or disabled. Set to zero to
disable battery backup, or to any non-zero value to enable battery backup.

Parameter Type Description

hbd HBD Board Handle.

Sensoray Instruction Manual 48 Model 626 Driver for Windows

4.9.3 S626_ChargeEnableSet()

Function: Enables/disables battery charging.

Prototype: VOID S626_ChargeEnableSet(HBD hbd, WORD enable);

Returns: None.

Notes: This function enables or disables trickle charging of a battery that supplies power to the counter circuits during a
system power failure.

An optional, external battery must be connected to the board. Refer to the Model 626 hardware manual for details.

Example: //
// Enable charging of the backup battery connected to board number 3.
//

S626_ChargeEnableSet(3, true);

4.9.4 S626_ChargeEnableGet()

Function: Returns the state of the enable for the battery charger.

Prototype: WORD S626_ChargeEnableGet(HBD hbd);

Returns: WORD value indicating whether battery charging is enabled for the backup battery. The return value is zero if
battery charging is disabled, or non-zero if battery charging is enabled.

Notes: An optional, external battery must be connected to the board. Refer to the Model 626 hardware manual for details.

Example: //
// Display a message indicating whether battery charging is enabled on board 3.
//

printf(S626_ChargeEnableGet(3) ? "Charging enabled.\n" : "Charging disabled.\n");

Parameter Type Description

hbd HBD Board Handle.

enable WORD Indicates whether backup battery charging is to be enabled or disabled. Set to zero
to disable battery charging, or to any non-zero value to enable battery charging.

Parameter Type Description

hbd HBD Board Handle.

Sensoray Instruction Manual 49 Model 626 Driver for Windows

4.10 Interrupt Functions

4.10.1 S626_InterruptEnable()

Function: Enables/disables the board’s master hardware interrupt.

Prototype: VOID S626_InterruptEnable(HBD hbd, WORD enable);

Returns: None.

Notes: The Model 626 driver implements hardware interrupt processing by means of a secondary thread, referred to as the
interrupt thread, which executues concurrently with the main driver thread. The interrupt thread is created when a
board is declared to the driver by calling S626_OpenBoard()with a non-zero callback address. A separate
interrupt thread is launched for each board that is declared to the driver.

When launched, the interrupt thread performs various initialization functions and then enters a dormant state. The
thread remains in the dormant state while it waits for a hardware interrupt. When an interrupt occurs, the thread
awakens, services the interrupt, and then returns to the dormant state to wait for the next interrupt. The interrupt
thread is terminated when the board becomes unregistered.

Two services are provided by the interrupt thread in response to a hardware interrupt:

1. The master hardware interrupt enable on the Model 626 board is masked (disabled). This prevents pending
interrupt requests from causing nested interrupts while an interrupt service is in progress.

2. An application interrupt service routine (ISR) callback function is invoked so that application-specific
interrupt handling can be performed. Note that the ISR callback function executes on the interrupt thread, not
on the main driver thread.

At a minimum, the application’s ISR callback function must determine which onboard resources caused the
interrupt, negate the pending interrupt requests for those resources, and then unmask the master board interrupt by
calling S626_InterruptEnable(). In most applications, a separate callback function is provided for each
board in order to quickly resolve the resources that need servicing.

The master board interrupt is masked in response to PCI bus resets or execution of the S626_OpenBoard()
function. Applications that employ Model 626 interrupts must call S626_InterruptEnable() to unmask
the master interrupt after either of these events has occurred. Also, because the master interrupt is automatically
disabled by the interrupt thread, S626_InterruptEnable() is usually invoked by the application at the end
of the ISR callback function.

S626_InterruptEnable() may be called to temporarily disable interrupts during a critical segment, which is
defined here as any program sequence that must not be interrupted. This is often required in applications that share
memory or other hardware resources among multiple threads.

Example: See the examples in Section 4.11.

Parameter Type Description

hbd HBD Board handle.

enable WORD Indicates whether the master hardware interrupt is to be enabled or disabled.
Set to zero to disable the interrupt, or to any non-zero value to enable the
interrupt.

Sensoray Instruction Manual 50 Model 626 Driver for Windows

4.10.2 S626_InterruptStatus()

Function: Returns the interrupt status of all counter and DIO (digital I/O) channels.

Prototype: VOID S626_InterruptStatus(HBD hbd, WORD *status);

The status argument is the address of an array of four WORD values that will be populated with interrupt status
information; this array will receive interrupt status for all interrupt sources on the specified board.

Table 10 shows the organization of the status information that is loaded into the target WORD array by this
function. The first three WORD elements of the array receive the interrupt status of the DIO channels, while the
fourth element receives the interrupt status of the counter channels.

The following abbreviations are used in Table 10:

A logic one in any bit position indicates that the associated resource is requesting interrupt service. For example, a
logic one in bit number 12 of the array’s fourth WORD element indicates that counter 1A has overflowed and is
requesting interrupt service.

Returns: None.

Notes: This function is typically used by application interrupt callback functions to quickly determine which onboard
resources are requesting interrupt service.

Example: See the examples in Section 4.11.

Parameter Type Description

hbd HBD Board Handle.

status WORD* Address of an array of WORDs that will receive the interrupt status.

Table 10: Organization of WORD array populated by S626_InterruptStatus().

Array
Index

Bit Position

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 DIO
15

DIO
14

DIO
13

DIO
12

DIO
11

DIO
10

DIO
9

DIO
8

DIO
7

DIO
6

DIO
5

DIO
4

DIO
3

DIO
2

DIO
1

DIO
0

1 DIO
31

DIO
30

DIO
29

DIO
28

DIO
27

DIO
26

DIO
25

DIO
24

DIO
23

DIO
22

DIO
21

DIO
20

DIO
19

DIO
18

DIO
17

DIO
16

2 0 0 0 0 0 0 0 0 DIO
39

DIO
38

DIO
37

DIO
36

DIO
35

DIO
34

DIO
33

DIO
32

3 OVR
2B

OVR
2A

OVR
1B

OVR
1A

OVR
0B

OVR
0A

IDX
2B

IDX
2A

IDX
1B

IDX
1A

IDX
0B

IDX
0A 0 0 0 0

Abbreviation: is the interrupt request status for:

DIO
xx

DIO channel xx captured an edge.

OVR
xx

Counter xx captured an overflow.

IDX
xx

Counter xx captured an index.

Sensoray Instruction Manual 51 Model 626 Driver for Windows

4.11 Interrupt Programming Examples

4.11.1 Example: DIO Interrupts

This example is a simple application that demonstrates how to use DIO interrupts.

This sample application consists of two functions that execute on two separate threads: a primary application function and an
interrupt handler. The interrupt handler counts interrupts occuring on DIO channels 0 through 15. Once per second, the main
function displays the accumulated interrupt counts and resets the counts to zero.

//
// Count the interrupts occurring on board 0, DIO channels 0-15.
//

#include <windows.h>
#include <stdio.h>
#include "Win626.h"

VOID AppISR(); // Function prototype.

// Array of zeros for fast resetting of interrupt counters.
const DWORD zeros[] = { 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 };

// Interrupt counters.
DWORD IntCounts[16] = { 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 };

// Synchronization structure for thread-safe execution.
CRITICAL_SECTION CriticalSection;

//
// APPLICATION MAIN FUNCTION.

VOID main()
{
 DWORD counts[16]; // Cached copy of interrupt counts.

 // Initialize the thread synchronization structure.
 InitializeCriticalSection(&CriticalSection);

 // Link to S626.DLL.
 S626_DLLOpen();

 // Declare board to driver and launch interrupt thread.
 S626_OpenBoard(0, 0, AppISR, THREAD_PRIORITY_ABOVE_NORMAL);
 if (S626_GetErrors(0))
 {
 printf("ERROR: problem opening board.\n");
 S626_DLLClose(); // Unlink from S626.DLL.
 return;
 }

 // Reset all DIO interrupt counters to zero.
 memcpy(IntCounts, zeros, sizeof(zeros));

 // Enable event capturing and interrupts on DIO channels 0-15.
 S626_DIOCapEnableSet(0, 0, 0xFFFF, true);
 S626_DIOIntEnableSet(0, 0, 0xFFFF);

 // Enable board master interrupt.
 S626_InterruptEnable(0, true);

 // Repeat for 10 seconds ...

Sensoray Instruction Manual 52 Model 626 Driver for Windows

 for (int seconds = 0; seconds < 10; seconds++)
 {
 // Suspend main thread for one second.
 Sleep(1000);

 // Copy, and then reset the interrupt counts. This is a critical section because
 // interrupt counters are shared by both the main thread and the interrupt thread.
 EnterCriticalSection(&CriticalSection); // * Start thread-safe section --------
 memcpy(counts, IntCounts, sizeof(counts)); // * Cache a copy of counters.
 memcpy(IntCounts, zeros, sizeof(zeros)); // * Reset counters to zero.
 LeaveCriticalSection(&CriticalSection); // * End thread-safe section ----------

 // Display cached interrupt counts.
 printf("\f**** INTERRUPT COUNTS ****\n");
 for (int i = 0; i < 16; i++)
 printf("DIO %2d counts = %8d", i, counts[i]);
 }

 // Unlink from S626.DLL.
 S626_DLLClose();

 // Delete the critical section.
 DeleteCriticalSection(&CriticalSection);
}

//
// ISR CALLBACK FUNCTION.

VOID AppISR()
{
 WORD IntStatus[4]; // Array that receives interrupt status.

 // Cache a copy of DIO channel 0-15 interrupt request (IRQ) status.
 S626_InterruptStatus(0, IntStatus); // Fetch IRQ status for all sources.
 register WORD status = IntStatus[0]; // Cache DIO 0-15 IRQ status.

 // Tally DIO 0-15 interrupts.
 register DWORD *pCounts = IntCounts; // Init pointer to interrupt counter.
 EnterCriticalSection(&CriticalSection); // * Start thread-safe section -----------
 for (register WORD mask = 1; mask != 0; pCounts++)
 { // *
 if (status & mask) // * If DIO is requesting service ...
 (*pCounts)++; // * increment DIO’s interrupt counter.
 mask += mask; // * Bump mask.
 } // *
 LeaveCriticalSection(&CriticalSection); // * End thread-safe section -------------

 // Negate all processed DIO interrupt requests.
 S626_DIOCapReset(0, 0, status);

 // Unmask board’s master interrupt enable.
 S626_InterruptEnable(0, true);
}

4.11.2 Example: Counter Interrupts

This example is a simple application that demonstrates how to use counter interrupts.

The application consists of two functions that execute on separate threads: a primary application function and an interrupt
handler. The main function initializes the frequency counter, consisting of counter pair 0A/0B, and then sleeps for ten seconds.
While the main thread sleeps, the interrupt handler fetches and displays acquired frequency data once per second.

Sensoray Instruction Manual 53 Model 626 Driver for Windows

//
// Sample application: interrupt-driven frequency counter.
//

#include <windows.h>
#include <stdio.h>
#include "Win626.h"

#define COUNTER CNTR_0A // Counter A (and implicitly, B) channel to use.

// Function prototypes.
VOID CreateFreqCounter(HBD hbd, WORD CounterA, WORD GateTime);
VOID AppISR();

//
// APPLICATION MAIN FUNCTION.

VOID main()
{
 // Link to S626.DLL.
 S626_DLLOpen();

 // Declare Model 626 board to driver and launch the interrupt thread.
 S626_OpenBoard(0, 0, AppISR, THREAD_PRIORITY_ABOVE_NORMAL);
 if (S626_GetErrors(0))
 printf("ERROR: problem opening board.\n");
 else
 {
 // Configure counter A/B pair as a frequency counter, gate time = 1 second.
 // Note: the CreateFreqCounter() function is shown in Section 4.7.6 on page 42.
 CreateFreqCounter(0, COUNTER, 1000);

 // Enable interrupts in response to captured counter A overflows.
 S626_CounterIntSourceSet(0, COUNTER, INTSRC_OVER);

 // Enable board’s master interrupt.
 S626_InterruptEnable(0, true);

 // Sleep for ten seconds.
 Sleep(10000);
 }

 // Disconnect from S626.DLL.
 S626_DLLClose();
}

///
// ISR CALLBACK FUNCTION. Since counter 0A is the only enabled interrupt
// source, there is no need to check for other interrupt requestors.

VOID AppISR()
{
 // Seconds counter.
 static WORD secs = 0;

 // Clear counter A overflow capture flag to negate the interrupt request.
 S626_CounterCapFlagsReset(0, COUNTER);

 // Read and display measured frequency from counter B. Note that the first
 // acquisition is not valid and should be ignored.
 printf("%2d: Frequency (Hz) = %8d.\r", ++secs, S626_CounterReadLatch(0, COUNTER + 3));

Sensoray Instruction Manual 54 Model 626 Driver for Windows

 // Enable board’s master interrupt.
 S626_InterruptEnable(0, true);
}

